Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Pathog ; 20(8): e1012291, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102426

RESUMO

SARS-CoV-2 spike protein (SARS-2-S) induced cell-cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.


Assuntos
COVID-19 , Senescência Celular , Células Gigantes , Insuficiência Cardíaca , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/virologia , Animais , Células Gigantes/virologia , Células Gigantes/metabolismo , Células Gigantes/patologia , COVID-19/metabolismo , COVID-19/complicações , COVID-19/virologia , COVID-19/patologia , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Camundongos , Vesículas Extracelulares/metabolismo
2.
Blood ; 143(11): 1018-1031, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38127913

RESUMO

ABSTRACT: Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.


Assuntos
Anemia Falciforme , Eritropoese , Camundongos , Animais , Humanos , Eritropoese/fisiologia , Fator de Transcrição STAT5/metabolismo , Hemólise , Hemina/metabolismo , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Anemia Falciforme/complicações
3.
Arterioscler Thromb Vasc Biol ; 44(8): 1799-1812, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899470

RESUMO

BACKGROUND: Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS: On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS: Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin ß2-mediated adhesion of monocytes but did not impair integrin α4ß1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4ß1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4ß1 but was not affected by talin1 deletion or antibodies to integrin ß2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin ß3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin ß3. CONCLUSIONS: Integrin α4ß1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4ß1 activation to the high-affinity state and integrin α4ß1-mediated monocyte recruitment. Yet, talin1 is required for integrin ß3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.


Assuntos
Aterosclerose , Adesão Celular , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Células Mieloides , Talina , Animais , Talina/metabolismo , Talina/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Macrófagos/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/imunologia , Doenças da Aorta/prevenção & controle , Masculino , Antígenos CD18/metabolismo , Antígenos CD18/genética , Integrina alfa4beta1/metabolismo , Integrina alfa4beta1/genética , Monócitos/metabolismo , Monócitos/imunologia , Placa Aterosclerótica , Camundongos , Células Cultivadas , Aorta/patologia , Aorta/metabolismo , Transdução de Sinais
4.
J Am Chem Soc ; 146(29): 19800-19808, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38976349

RESUMO

Liquid metal (LM) nanodroplets possess intriguing surface properties, thus offering promising potential in chemical synthesis, catalysis, and biomedicine. However, the reaction kinetics and product growth at the surface of LM nanodroplets are significantly influenced by the interface involved, which has not been thoroughly explored and understood. Here, we propose an interface engineering strategy, taking a spontaneous galvanic reaction between Ga0 and AuCl4- ions as a representative example, to successfully modulate the growth of heterostructures on the surface of Ga-based LM nanodroplets by establishing a dielectric interface with a controllable thickness between LM and reactive surroundings. Combining high-resolution electron energy-loss spectroscopy (EELS) analysis and theoretical simulation, it was found that the induced charge distribution at the interface dominates the spatiotemporal distribution of the reaction sites. Employing tungsten oxide (WOx) with varying thicknesses as the demonstrated dielectric interface of LM, Ga@WOx@Au with distinct core-shell-satellite or dimer-like heterostructures has been achieved and exhibited different photoresponsive capabilities for photodetection. Understanding the kinetics of product growth and the regulatory strategy of the dielectric interface provides an experimental approach to controlling the structure and properties of products in LM nanodroplet-involved chemical processes.

5.
J Am Chem Soc ; 146(7): 4652-4664, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38265705

RESUMO

Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.

6.
J Med Virol ; 96(2): e29433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293900

RESUMO

High-risk populations are the predominant populations affected by hepatitis C virus (HCV) infection, and there is an urgent need for efficient and cost-effective HCV testing strategies for high-risk populations to identify potential undiagnosed HCV-infected individuals. This study compared several commonly used testing strategies and conducted effectiveness and cost analysis to select the appropriate testing strategy for diagnosing HCV infection in high-risk populations. Among the 2093 samples from high-risk populations in this study, 1716 were HCV negative, 237 were current HCV infection, 137 were past HCV infection, and three were acute early HCV infection. It was found that out of 237 patients with HCV current infection, Strategy A could detect 225 cases, with a missed detection rate of 5.06%, and the total cost was 33 299 RMB. In addition, Strategy B could detect 237 cases of current HCV infection, and the HCV missed detection rate was 0.00%, and the total cost was 147 221 RMB. While 137 cases of past HCV infection could be distinguished by strategy C, but 14 cases with current HCV infection were missed, with an HCV-positive missed detection rate of 5.91%, and the total cost for Strategy C was 43 059 RMB. In conclusion, in high-risk populations, the HCV positivity rate is typically higher. If feasible, the preferred approach is to directly conduct HCV RNA testing, which effectively minimizes the risk of missing cases. However, in situations with limited resources, it is advisable to initially choose a highly sensitive method for anti-HCV screening, followed by HCV RNA testing on reactive samples.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Análise Custo-Benefício , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Fatores de Risco , RNA
7.
Phys Chem Chem Phys ; 26(32): 21342-21356, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38829308

RESUMO

Molten salts play an important role in various energy-related applications such as high-temperature heat transfer fluids and reaction media. However, the extreme molten salt environment causes the degradation of materials, raising safety and sustainability challenges. A fundamental understanding of material-molten salt interfacial evolution is needed. This work studies the transformation of metallic Cr in molten 50/50 mol% KCl-MgCl2via multi-modal in situ synchrotron X-ray nano-tomography, diffraction and spectroscopy combined with density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Notably, in addition to the dissolution of Cr in the molten salt to form porous structures, a δ-A15 Cr phase was found to gradually form as a result of the metal-salt interaction. This phase change of Cr is associated with a change in the coordination environment of Cr at the interface. DFT and AIMD simulations provide a basis for understanding the enhanced stability of δ-A15 Cr vs. bcc Cr, by revealing their competitive phase thermodynamics at elevated temperatures and probing the interfacial behavior of the molten salt at relevant facets. This study provides critical insights into the morphological and chemical evolution of metal-molten salt interfaces. The combination of multimodal synchrotron analysis and atomic simulation also offers an opportunity to explore a broader range of systems critical to energy applications.

8.
Clin Lab ; 70(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38965964

RESUMO

BACKGROUND: Streptococcus agalactiae (GBS) and Escherichia coli (E. coli) are the main pathogenic bacteria in neonatal sepsis. Therefore, the clinical characteristics, nonspecific indicators, and drug susceptibilities of these two bacteria were studied. METHODS: In total, 81 and 80 children with sepsis caused by GBS and E. coli infection, respectively, admitted to the neonatal department of our hospital between May 2012 and July 2023, were selected, and the clinical characteris-tics of the two groups were analyzed. Nonspecific indicators and drug sensitivity test results were analyzed retrospectively. RESULTS: Birth weight, tachypnea, groan, tachycardia or bradycardia, and the incidence of complications, such as pneumonia, respiratory failure, and purulent meningitis, were higher in the GBS group than in the E. coli group. The children were born prematurely, and the mother had a premature rupture of membranes. The incidence of jaundice, abdominal distension, atypical clinical manifestations, and complications of necrotizing enterocolitis was lower than of the E. coli group, and the differences were statistically significant (p < 0.05). The WBC, NE#, NE#/LY#, hs-CRP, and PCT of the GBS group were higher than those of the E. coli group, whereas the MPV, D-D, and FDP levels were lower than those in the E. coli group. The differences were all statistically significant (p < 0.05). The 81-bead GBS had high resistance rates against tetracycline (95%), erythromycin (48.8%), and clindamycin (40%), and no strains resistant to vancomycin, linezolid, penicillin, or ampicillin appeared, whereas 80 strains of E. coli were more resistant to penicillin and third-generation cephalosporins, with the higher resistance rates to ampicillin (68.30%), trimethoprim/sulfamethoxazole (53.6%), and ciprofloxacin (42.90%). Resistance rates to carbapenems and aminoglycosides were extremely low. CONCLUSIONS: Both GBS and E. coli neonatal sepsis have specific clinical characteristics, especially in terms of clinical manifestations, complications, non-specific indicators, and drug resistance. Early identification is important for clinical diagnosis and treatment.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Sepse Neonatal , Infecções Estreptocócicas , Streptococcus agalactiae , Humanos , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/isolamento & purificação , Sepse Neonatal/microbiologia , Sepse Neonatal/diagnóstico , Sepse Neonatal/tratamento farmacológico , Sepse Neonatal/epidemiologia , Recém-Nascido , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Feminino , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/diagnóstico , Estudos Retrospectivos , Masculino , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/tratamento farmacológico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
9.
Appl Opt ; 63(9): 2331-2339, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38568589

RESUMO

A new method, to the best of our knowledge, based on double-slit (DS) interference is proposed to accurately estimate the shear ratio of the system, with plane wave or spherical wave incidence. Existing shear ratio calibration methods, designed primarily for lateral shearing interferometry (LSI) with plane wave incidence, are not applicable to LSIs directly testing divergent or convergent spherical waves. Equations for calculating the shear ratio using the fringe spacing of the DS interferogram and the NA of the incident spherical wave are derived in this paper. The simulation result shows that the relative error of the shear ratio value is about 0.3%, when the shear ratio is 0.1. In the experiment, the quadriwave LSI is designed with a plug-in feature. The shear ratio at integer multiples of 1/6 Talbot distance from the modified Hartmann mask was calibrated using a DS, and the results were in good agreement with theoretical values, confirming the accuracy of the method. Subsequently, with the assistance of an inductance micrometer, the shear ratio was calibrated at intervals of 0.5 mm, and the results closely matched the theoretical variation of the shear ratio caused by displacement, confirming the high precision of the method.

10.
Skin Res Technol ; 30(3): e13653, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488420

RESUMO

BACKGROUND: During the coronavirus disease 2019 pandemic, wearing medical respirators and masks was essential to prevent transmission. OBJECTIVE: To quantify the effects of N95 mask usage by measuring facial skin biophysical characteristics and changes in the lipidome. METHODS: Sixty healthy volunteers wore N95 respirators for 3 or 6 h. Facial images were acquired and physiological parameters were measured in specific facial areas, before and after mask-wearing. Lipidome analysis was also performed. RESULTS: After N95 respirator usage, facial erythema was observed in both the 3 and 6 h groups. Both sebum secretion and trans-epidermal water loss increased significantly in mask-covered cheeks and chins after 6 h of mask wearing compared with before mask wearing (p < 0.05). Principal component analysis revealed significant differences in lipid composition after mask wearing compared with before. The ceramide subclass NS exhibited a positive correlation with stratum corneum hydration, whereas the AP subclass was negatively correlated with trans-epidermal water loss in the 6 h group. CONCLUSION: Prolonged wear of N95 respirators may impair facial skin function and alter lipidome composition.


Assuntos
Respiradores N95 , Dispositivos de Proteção Respiratória , Humanos , Lipidômica , Máscaras , Água , Atenção à Saúde
11.
Int J Behav Med ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316668

RESUMO

BACKGROUND: Demoralization, a significant mental health concern in patients with chronic diseases, can have a large impact on physical symptom burden and quality of life. The present review aimed to evaluate the effectiveness of interventions for demoralization among patients with chronic diseases. METHOD: PubMed, Scopus, Embase, and Web of Science were systematically searched. Research on providing interventions to patients with chronic diseases that included quantitative data on demoralization was then systematically reviewed. RESULTS: Fourteen studies were included, most of which considered demoralization as a secondary outcome. Interventions included evidence-based meaning-centered psychotherapy, dignity therapy, psilocybin-assisted psychotherapy, and others. Ten studies used randomized controlled designs. Six of these investigated evidence-based meaning-centered therapy, and four investigated dignity therapy, showing the best empirical support for these intervention types. Most studies showed significant impacts on demoralization in patients with chronic diseases. CONCLUSION: This systematic review provides insights into potential psychological interventions for reducing demoralization in patients with chronic diseases. Randomized controlled designs and adequately powered samples, with demoralization as the primary outcome, are needed to more clearly evaluate its effectiveness.

12.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257322

RESUMO

Five artemisinin bivalent ligands molecules 4a-4e were designed, synthesized, and confirmed by 1H NMR, 13C NMR, and low-resolution mass spectrometry, and the bioactivities of the target compounds were investigated against four human tumor cell lines in vitro, including BGC-823, HepG-2, MCF-7, and HCT-116. The results showed 4a, 4d, and 4e exhibited significantly tumor cell inhibitory activity compared with the artemisinin and dihydroartemisinin; compound 4e has good biological activity inhibiting BGC-823 with an IC50 value of 8.30 µmol/L. Then, the good correlations with biological results were validated by molecular docking through the established bivalent ligands multi-target model, which showed that 4e could bind well with the antitumor protein MMP-9.


Assuntos
Artemisininas , Humanos , Simulação de Acoplamento Molecular , Artemisininas/farmacologia , Linhagem Celular Tumoral , Ligantes
13.
J Environ Sci (China) ; 146: 67-80, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969463

RESUMO

Groundwater is the main source of drinking water for the rural population in the chronic kidney disease of unknown etiology (CKDu) zone of the North Central Province (NCP) in Sri Lanka. In this study, a total of 334 groundwater samples (311 dug wells, 21 tube wells and 2 springs) during the wet season from two aquifers in the NCP were collected, and investigated their chemical characteristics and evaluate their water quality, including groundwater chemistry, main ion sources, the corrosion and scaling potential of groundwater. The results showed that the two hydrochemical types of groundwater in the NCP were mainly of the Ca-HCO3, Na·Ca-HCO3 types, with the main HCO3-, Na+ and Ca2+ ions in both types of groundwater originating from silicate and evaporite salt dissolution and influenced by alternating cation adsorption, while the presence of NO3- was mainly anthropogenic. Evaluation of water stability using namely Langelier saturation index (LSI), Ryznar stability index (RSI), Puckorius scaling index (PSI) and Larson-Skold index (LS), indicated that most groundwater presents corrosion potential and has corrosion behavior tendency of metals to some degrees. The water quality of Polonnaruwa was better than that of Anuradhapura in the NCP, and when the groundwater was worse than the "good" grade, which must be properly treated before it is used as drinking water.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Sri Lanka , Água Subterrânea/química , Poluentes Químicos da Água/análise , Qualidade da Água , Insuficiência Renal Crônica , Água Potável/química , Água Potável/análise , Abastecimento de Água
14.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3095-3112, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041169

RESUMO

According to the theory of five movements and six climates, the innate constitution plays a crucial role in determining the underlyingpa thological mechanisms of diseases later in life. Previous studies have demonstrated a close association between the constitution, as defined by the theory of five movements and six climates, and the development of various types of tumors. Furt hermore,the tumorsubtype determined by the constitution has prognostic implications. This highlights the potential of utilizing the fivemovements and six climates theory to guide the implementation of precision medicine strategies in thefield of oncology. However, no resear ch has yet been conducted to investigate the use of this theory in guiding the development of tumor molecular classification and precisi onmedicine strategies. The objective of this research is to uncover the biological characteristics of each constitution within a pancanc ercohort and identify potential anti-tumor drugs that are applicable to patients with different constitutional types. By doing so, we aimto c ontribute to the establishment of a precision medicine strategy for tumors derived from the original concepts of traditional Chi nesemedicine(TCM). In this study, we obtainedpan-cancer Bulk RNA-Seq data from UCSC Xena, GWAS cohort data from the UKBiobank, and cis-eQTLs data from eQ TLGen and GTEx V8. We employed machine learning methods to screen for hub genes associated with each constitution. Subsequently, we utilized informatics tools to explore the biological characteristics of each constitut iondefined by the theory of five movements and six bioclimates. Further, potential anti-tumor drugs suitable for patients with differen tconstitutional types were identified through mendelian randomization, molecular docking, and drug-like prediction techniques. Withinthe pan-cancer cohort, significant differences were observed among different constitutions in terms of progression-free interval, biological f unctions, immune cell abundance, tumor drug sensitivity, and immunotherapy response. These findings suggest that the five movements and six climates theory can guide tumor molecular classification and the development of precision medicine strategies. Moreover,the biological characteristics inherent to each constitution partially shed light on the scientific implications of Chinese medicinetheories, offering a fresh perspective towards clinical cancer treatment. Through molecular docking and drug-like prediction, several po tential anti-tumor drugs such as 17-beta-estradiol, serotonin, trans-resveratrol, and linoleic acid were identified. Overall, the util izationof multi-omics approaches pro vides a powerful tool to unravel the scientific foundations of TCM theories. The elucidation of themu lti-omics features associated witheach constitution in tumors serves as the basis for applying the five movements and six climates theoryto tumor molecular classification and the development of precision medicine strategies.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Medicina de Precisão , RNA-Seq , Medicina Tradicional Chinesa , Constituição Corporal/genética
15.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493895

RESUMO

Ribosomes across species contain subsets of zinc finger proteins that play structural roles by binding to rRNA. While the majority of these zinc fingers belong to the C2-C2 type, the large subunit protein L36 in bacteria and mitochondria exhibits an atypical C2-CH motif. To comprehend the contribution of each coordinating residue in S. cerevisiae bL36m to mitoribosome assembly and function, we engineered and characterized strains carrying single and double mutations in the zinc coordinating residues. Our findings reveal that although all four residues markedly influence protein stability, C to A mutations in C66 and/or C69 have a more pronounced effect compared to those at C82 and H88. Importantly, protein stability directly correlates with the assembly and function of the mitoribosome and the growth rate of yeast in respiratory conditions. Mass spectrometry analysis of large subunit particles indicates that strains deleted for bL36m or expressing mutant variants have defective assembly of the L7/L12 stalk base, limiting their functional competence. Furthermore, we employed a synthetic bL36m protein collection, including both wild-type and mutant proteins, to elucidate their ability to bind zinc. Our data indicate that mutations in C82 and, particularly, H88 allow for some zinc binding albeit inefficient or unstable, explaining the residual accumulation and activity in mitochondria of bL36m variants carrying mutations in these residues. In conclusion, stable zinc binding by bL36m is essential for optimal mitoribosome assembly and function. MS data are available via ProteomeXchange with identifierPXD046465.


Assuntos
Ribossomos Mitocondriais , Saccharomyces cerevisiae , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dedos de Zinco/genética , Subunidades Ribossômicas Maiores/genética , Zinco/metabolismo
16.
Methods Mol Biol ; 2839: 249-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008259

RESUMO

Thiol-disulfide interconversions are pivotal in the intricate chemistry of biological systems. They play a vital role in governing cellular redox potential and shielding against oxidative harm. These interconversions can also act as molecular switches within an expanding array of redox-regulated proteins, facilitating dynamic and responsive processes. Furthermore, metal-binding proteins often use thiols for coordination. Reverse thiol trapping is a valuable analytical tool to study the redox state of cysteines in biological systems. By selectively capturing and stabilizing free thiol species with an alkylating agent, reverse thiol trapping allows for their subsequent identification and quantification. Various methods can be employed to analyze the trapped thiol adducts, including electrophoresis-based methods, mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatographic techniques. In this chapter, we will focus on describing a simple and sensitive method to sequentially block thiols in their cellular state with a cell-permeant agent (iodoacetamide), and following reduction and denaturation of the samples, trap the native disulfides with a second blocker that shifts the apparent molecular weight of the protein. The oxidation status of proteins for which suitable antibodies are available can then be analyzed by immunoblotting. We present examples of mitochondrial proteins that use cysteine thiols to coordinate metal factors such as iron-sulfur clusters, zinc, and copper.


Assuntos
Proteínas Mitocondriais , Oxirredução , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Humanos , Iodoacetamida/química , Dissulfetos/química , Dissulfetos/metabolismo , Metais/química , Metais/metabolismo , Cisteína/química , Cisteína/metabolismo
17.
Sci Total Environ ; 923: 171324, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431161

RESUMO

Air pollution is a primary concern, causing around 7 million premature deaths annually, with traffic-related sources contributing 23 %-45 % of emissions. While several studies have surveyed vehicle emission models, they are either outdated or focus on specific data-driven models. This paper systematically reviews vehicle emission prediction models, comparing traditional approaches with data-driven emission models. The traditional emission models can be divided into average-speed, modal, and other models, noting their reliance on empirical assumptions and parameters that may not be universally applicable. In contrast, we delve into data-driven models utilizing dynamometer and on-road test data for time-series and spatial-temporal predictions. The application of these models is discussed across various scenarios, highlighting the progress and gap. We observed that traditional models, primarily estimating total traffic emissions in study regions, lack micro-level detail crucial for tailored decisions. The direct link between road emission model accuracy and input data quality poses challenges in disaggregating on-road vehicle emission inventories. Due to unique transportation instruments, traffic fleet components, and patterns, exploring the effects of emission-reduction policies in specific cities or regions is urgent. Vehicle characteristics, environmental conditions, traffic scenarios, and prediction scales are common effect factors, while instantaneous driving profiles prove effective in model calibration. In data-driven models, ANN outperforms in estimating emissions and performance of low-power diesel engines with errors not exceeding 5 %. However, no single data-driven method performed excellently in predicting all pollutants. Besides, integrated methods utilizing LSTM, GRU, and RNN outperform individual models. To enhance prediction accuracy considering the inherent connectivity of road networks and spatiotemporal variation patterns of vehicle emissions, GCN is an emerging approach for capturing spatial-temporal relationships based on remote sensing data. Moreover, limited data-driven studies have been performed to forecast particle matter emissions, the main contributors to urban pollution, calling for more attention for future research.

18.
Perit Dial Int ; 44(2): 117-124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265011

RESUMO

BACKGROUND: Reports on COVID-19 in peritoneal dialysis (PD) patients are scarce in China. This study aimed to describe the characteristics and outcomes of PD patients with COVID-19 after China abandoned the 'zero-COVID' policy. METHODS: This single-centre retrospective study included patients receiving PD who underwent testing for COVID-19 infections between 7 December 2022 and 7 January 2023. Outcomes of interest included factors associated with positive COVID-19 testing result and clinical outcomes including COVID-19-related hospitalisation and severe COVID-19, which were analysed using logistic regression analyses. RESULTS: A total of 349 PD patients (male 53.6%, age 49 ± 13 years old) were included, and 235 patients (67.3%) were infected. There were no significant differences between COVID-19 and non-COVID-19 patients other than higher proportion of vaccinated patients and slow transporters in the patients who tested positive for COVID-19 (44.7% vs. 28.1%, p = 0.003; 8.7% vs. 1.8%, p = 0.03, respectively). Multivariate analysis showed COVID-19 was associated with vaccination (odds ratio (OR): 1.71, 95% confidence interval (CI): 1.02-2.86) and slow transport type (compared with average transport type, OR: 4.52, 95% CI: 1.01-20.21). Among the patients with infection, 38 (16.2%) patients were hospitalised, 18 (7.7%) patients had severe disease and 9 (3.8%) patients died. In multivariate logistic analysis, both age (OR: 1.04, 95% CI: 1.01-1.07; OR: 1.06, 95% CI: 1.02-1.11) and hyponatremia (OR: 5.44, 95% CI: 1.63-18.13; OR: 6.50, 95% CI: 1.77-23.85) were independent risk factors for COVID-19-related hospitalisation and severe disease. CONCLUSIONS: Although vaccinated patients were more likely to have tested positive for COVID-19 infection, they appeared to have less severe infection and less need for hospitalisation. Patients who were older with a history of hyponatremia were more likely to experience adverse outcomes from COVID-19.


Assuntos
COVID-19 , Hiponatremia , Falência Renal Crônica , Diálise Peritoneal , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Diálise Peritoneal/efeitos adversos , Teste para COVID-19 , Estudos Retrospectivos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/terapia , Falência Renal Crônica/etiologia , Hiponatremia/complicações , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/complicações
19.
Artigo em Chinês | MEDLINE | ID: mdl-38297852

RESUMO

Hyperlipidemia is characterized by elevated levels of blood lipids. The clinical manifestations are mainly atherosclerosis caused by the deposition of lipids in the vascular endothelium. The link between abnormal lipid metabolism and sudden hearing loss remains unclear. This article presents a case study of sudden hearing loss accompanied by familial hyperlipidemia. Pure tone audiometry indicated intermediate frequency hearing loss in one ear. Laboratory tests showed abnormal lipid metabolism, and genetic examination identified a heterozygous mutation in theAPOA5 gene. Diagnosis: Sudden hearing loss; hypercholesterolemia. The patient responded well to pharmacological treatment. This paper aims to analyze and discuss thepotential connection between abnormal lipid metabolism and sudden hearing loss.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Hiperlipidemias , Humanos , Audiometria de Tons Puros , Surdez/complicações , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Súbita/diagnóstico , Hiperlipidemias/complicações , Lipídeos
20.
Sci Total Environ ; 933: 173302, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38759923

RESUMO

Carbon metabolism and nutrient removal are crucial for biological wastewater treatment. This study focuses on analyzing carbon allocation and utilization by heterotrophic bacteria in response to increasing COD concentration in the influent. The study also assesses the effect of denitrification and biological phosphorus removal, particularly in combination with anaerobic ammonia oxidation (anammox). The experiment was conducted in a SBR operating under anaerobic/anoxic/oxic conditions. As COD concentration in the influent increased from 100 to 275 mg/L, intracellular COD accounted for 95.72 % of the COD removed. By regulating the NO3- concentration in the anoxic stage from 10 to 30 mg/L, the nitrite accumulation rate reached 69.46 %, which could serve as an electron acceptor for anammox. Most genes related to the tricarboxylic acid (TCA) cycle declined, while the genes involved in the glyoxylate cycle, gluconeogenesis, PHA synthesis increased. This suggests that glycogen accumulation and carbon storage, rather than direct carbon oxidation, was the dominant pathway for carbon metabolism. However, the genes responsible for the reduction of NO2--N (nirK) and NO (nosB) decreased, contributing to NO2- accumulation. The study also employed metagenomic analysis to reveal microbial interactions. The enrichment of specific bacterial species, including Dechloromonas sp. (D2.bin.10), Ca. Competibacteraceae bacterium (D9.bin.8), Ca. Desulfobacillus denitrificans (D6.bin.17), and Ignavibacteriae bacterium (D3.bin.9), played a collaborative role in facilitating nutrient removal and promoting the combination with anammox.


Assuntos
Bactérias , Carbono , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Fósforo/metabolismo , Carbono/metabolismo , Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Desnitrificação , Águas Residuárias/microbiologia , Processos Heterotróficos , Reatores Biológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA