Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(1): 010503, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350962

RESUMO

Quantum mechanics provides the means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a manner that is independent of implementation devices. Here, we present an experimental study of device-independent quantum random number generation based on a detection-loophole-free Bell test with entangled photons. In the randomness analysis, without the independent identical distribution assumption, we consider the worst case scenario that the adversary launches the most powerful attacks against the quantum adversary. After considering statistical fluctuations and applying an 80 Gb×45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10^{-5}. This marks a critical step towards realistic applications in cryptography and fundamental physics tests.

2.
ACS Omega ; 9(21): 23053-23059, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826519

RESUMO

In this paper, we present a study of the thermal transport of epitaxial bilayer graphene microbridges. The thermal conductance of three graphene microbridges with different lengths was measured at different temperatures using Johnson noise thermometry. We find that with the decrease of the temperature, the thermal transport in the graphene microbridges switches from electron-phonon coupling to electron diffusion, and the switching temperature is dependent on the length of the microbridge, which is in good agreement with the simulation based on a distributed hot-spot model. Moreover, the electron-phonon thermal conductance has a temperature power law of T3 as predicted for pristine graphene and the electron-phonon coupling coefficient σep is found to be approximately 0.18 W/(m2 K4), corresponding to a deformation potential D of 55 eV. In addition, the electron diffusion in the graphene microbridges adheres to the Wiedemann-Franz law, requiring no corrections to the Lorentz number.

3.
EPJ Quantum Technol ; 9(1): 23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36108324

RESUMO

We study potential security vulnerabilities of a single-photon detector based on superconducting transition-edge sensor. In one experiment, we show that an adversary could fake a photon number result at a certain wavelength by sending a larger number of photons at a longer wavelength, which is an expected and known behaviour. In another experiment, we unexpectedly find that the detector can be blinded by bright continuous-wave light and then, a controlled response simulating single-photon detection can be produced by applying a bright light pulse. We model an intercept-and-resend attack on a quantum key distribution system that exploits the latter vulnerability and, under certain assumptions, able to steal the key.

4.
J Chem Phys ; 130(17): 174309, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19425778

RESUMO

Recent direct simulation Monte Carlo (DSMC) simulations of homogeneous condensation in free expansion water plumes [Z. Li, J. Zhong, D. A. Levin, and B. Garrison, AIAA J. 47, 1241 (2009)] show that the nucleation rate is a key factor for accurately modeling condensation phenomenon. In this work, we use molecular dynamics (MD) simulations of a free expansion to explore the microscopic mechanisms of water dimer formation and develop collision models required by DSMC. Bimolecular and termolecular dimer cluster formation mechanisms are considered and the former is found to be the main mechanism in expanding flows to vacuum. MD simulations between two water molecules using the simple point charge intermolecular potential were performed to predict the bimolecular dimer formation probability and the probability was found to decrease with collision energy. The formation probabilities and postcollisional velocity and energy distributions were then integrated into DSMC simulations of a free expansion of an orifice condensation plume with different chamber stagnation temperatures and pressures. The dimer mole fraction was found to increase with distance from the orifice and become constant after a distance of about two orifice diameters. Similar to experiment, the terminal dimer mole fraction was found to decrease with chamber stagnation temperatures and increase linearly with chamber stagnation pressures which is consistent with a bimolecular nucleation mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA