Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(10): 5812-5820, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29660985

RESUMO

Aquatic ecosystems and human health have been seriously threatened by illegal discharge of wastewater, while simple and effective monitoring methods are still sparse. Here, we propose a facile method for on-site pollutant monitoring by surface-enhanced Raman spectroscopy with a novel substrate. This substrate is fabricated by interface self-assembly of Au@Ag nanocubes (NCs) on a simultaneously formed polyvinyl chloride (PVC) template, followed by coating with a thin Au film. The Au@Ag@Au-NCs/PVC film is flexible, ultralight, and robust and could float on the surface of water and firmly contact with water even under harsh environmental conditions. Moreover, the Au@Ag@Au-NCs/PVC film is translucent, allowing penetration of laser beams and enhancement of Raman signals. When thiram was used as a model contaminant in aqueous solution, a good linear relationship ( R2 = 0.972) was obtained over the range of 0.1-50 ppb with a detection limit of 0.1 ppb. Raman signals of thiram can be instantly and consecutively detected with the enhancement of the film in the simulated experiments, suggesting its possible use in the long run. Furthermore, the film can be easily regenerated by NaBH4 solution washing, which could reduce the operating cost. In summary, the Au@Ag@Au-NCs/PVC film has great potential in on-site pollutant monitoring in aqueous environments with a portable Raman spectrometer.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Poluentes Químicos da Água , Ecossistema , Ouro , Humanos , Cloreto de Polivinila , Prata , Análise Espectral Raman
2.
J Nanosci Nanotechnol ; 18(8): 5624-5635, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458618

RESUMO

The preparation, characterization and application of chitosan (CS) based electrospun nanofiber membrane for the adsorptive removal of Cu(II) from water were systematically investigated. Homogeneous, porous polyvinyl alcohol (PVA)/CS nanofiber membrane with amorphous structure, and average fiber diameter of 49 nm was successfully fabricated. The adsorption of Cu(II) onto the positively charged PVA/CS nanofiber membrane (pH < 6) was due to chemisorption rather than electrostatic adherence, and was highly pH-dependent. The adsorption equilibrium of Cu(II) by the PVA/CS nanofiber was established within 120 min, which was much faster than that by CS beads, and the adsorption kinetics followed pseudo-second-order model well (r 2 > 0.995). The adsorption isotherm data were well fitted with Langmuir model, and the maximum Cu(II) adsorption capacity of PVA/CS nanofiber membrane was 90.3 mg·g-1, which was much higher than that of CS beads. The adsorbed Cu(II) formed strong inner-sphere complex with the adsorbent. Coexisting cations of iron, lead, cadmium, nickel, calcium, and magnesium have insignificant effect on the Cu(II) adsorption, indicating the adsorbent has good selectivity for Cu(II) adsorption. FTIR and XPS analysis reveal amine, hydroxyl and ether groups are responsible for the Cu(II) adsorption. This work demonstrates the electrospun PVA/CS nanofiber membrane is a promising adsorbent for heavy metal removals.

3.
Anal Chem ; 86(13): 6262-7, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24873535

RESUMO

We report a simple and rapid method for fabricating a surface-enhanced Raman scattering (SERS) substrate, which offers good flexibility, excellent optical transparency, and high SERS activity. Specifically, the SERS substrate (AuNPs/PMMA film) was obtained through self-assembly of gold nanoparticles (AuNPs) on newborn poly(methyl methacrylate) (PMMA) template. The UV-vis spectroscopy analysis and scanning electron microscopy observation revealed that the gold nanoparticles were closely assembled on the flexible and transparent PMMA template. The fabricated AuNPs/PMMA film SERS substrate allowed detection of model molecule, malachite green isothiocyanate, at a concentration as low as 0.1 nM, and exhibited good reproducibility in the SERS measurement. The Raman enhancement factor (EF) of the AuNPs/PMMA film was found to be as high as (2.4 ± 0.3) × 10(7). In addition, measure of residual malachite green on fish surface was carried out, and the result indicated that the AuNPs/PMMA film had great potential in the in situ ultrasensitive detection of analyte on irregular objects.


Assuntos
Corantes/análise , Ouro/química , Isotiocianatos/análise , Nanopartículas Metálicas/química , Polimetil Metacrilato/química , Corantes de Rosanilina/análise , Análise Espectral Raman/métodos , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Reprodutibilidade dos Testes , Propriedades de Superfície
4.
J Hazard Mater ; 443(Pt A): 130130, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265379

RESUMO

With rapid urbanization, microplastics and natural organic matters (NOMs) are ubiquitous in aquatic environment, and microplastics could act as carriers for organic matters in the aqueous solution and may pose a potential risk. In this study, the adsorption behaviors and mechanism of typical NOM, humic acid (HA), on polyvinyl chloride (PVC) and polystyrene (PS) microplastics were investigated. Various influence factors such as solution pH, ions species and concentrations, particle size, and coexisting surfactants were studied. The results suggested that HA adsorption onto PVC and PS was low pH-dependent, and ion species and concentrations have a significant impact on the adsorption capacity. In addition, the particle size of PVC and PS microplastics exhibited a significant correlation with HA adsorption, and the adsorption process was influenced by the surfactant species and concentrations. Moreover, the adsorption behaviors of HA in different real water environments were tested, and UV aging exhibited the opposite effects on adsorption capacity of PVC and PS. Furthermore, the adsorption mechanisms of HA onto PVC and PS were explored, indicating halogen bonding, hydrogen bonding, and π-π interaction play important roles in the adsorption process.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Adsorção , Cinética , Cloreto de Polivinila , Poluentes Químicos da Água/análise , Substâncias Húmicas/análise , Água , Poliestirenos , Tensoativos , Íons
5.
Chemosphere ; 287(Pt 1): 131962, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34450369

RESUMO

A fish scale-based porous activated biochar with defined pore size (DPBC) was fabricated by a one-step calcination and activation method. The DPBC possessed an ultrahigh specific surface area of 3370 m2 g-1 and its pore diameter centered at 1.49 nm which fits into the ciprofloxacin (CIP) molecular dimension, making it an ideal adsorbent for CIP adsorption due to the molecular pore-filling effect. The maximum Langmuir monolayer adsorption capacity of DPBC for CIP was higher than 1000 mg g-1 and the equilibrium time was less than 4 h, superior to most adsorbents reported in literature. Thermodynamic analysis indicated the adsorption process was spontaneous and endothermic. Notably, fixed-bed experiments showed an encouraging adsorption performance towards CIP, with a high saturated dynamic adsorption capacity of 880.3 mg g-1. Both Thomas and Yoon-Nelson models predict the fixed-bed column adsorption performance well. Hydrophobic effect, π-π interaction, π-π EDA, cation exchange, hydrogen bonding formation, pore filling effect, electrostatic and cation-π interaction involved in the CIP adsorption on the DPBC.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Cinética , Poluentes Químicos da Água/análise
6.
Nanoscale ; 11(27): 12829-12836, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184679

RESUMO

We have demonstrated a one-step approach for the fabrication of flexible, robust, reproducible and free-standing SERS substrates (AuNPs/polyvinyl chloride (PVC) film) through a polymer induced interfacial self-assembly method. In this method, the polymer (PVC) plays dual roles, that is, inducing the interfacial self-assembly of nanoparticles and fixing the assembled nanostructure in the PVC matrix. As the assembled nanoparticles are orderly half-embedded in the PVC film, the AuNPs/PVC film exhibits outstanding reproducibility and stability. In addition, the film could be easily regenerated by rinsing with NaBH4 solution. As a proof of concept, the film was directly wrapped on an apple surface for in situ detection of pesticide residues, and a detection limit of 10 ng cm-2 thiram was achieved. Furthermore, rapid on-site and in situ detection of multi-pesticide residues has been proved to be feasible with the aid of a portable Raman spectrometer. Due to its simple preparation, good reliability, outstanding stability and reusability, the AuNPs/PVC film has great potential in practical applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Resíduos de Praguicidas/análise , Tiram/análise , Análise Espectral Raman
7.
Environ Int ; 128: 37-45, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31029978

RESUMO

Oil contamination will seriously affect the health of water environment, so it is necessary to design ideal oil absorbents with large absorption capacity and high selectivity for effectively purify the oil contaminated water. Preparing high performance carbon aerogel for oil absorption has attracted growing attention, but challenges remain. Here we report a facile approach to fabricate mechanical strength enhanced three-dimensional (3D) nanofibrous aerogel principally through supporting agent liquid assisted collection-electrospinning technology, in which the immersion work was applied to measure the immersion capacity of nanofibers according to liquid-solid interfaces theory. Particularly, electrospun polyacrylonitrile (PAN) nanofibers (NFs) were collected directly in graphene oxide (GO) aqueous dispersion, and the continuous fibrous skeleton assembled with two-dimensional (2D) GO sheets to form open porous networks during the electrospinning process, which basically avoided the tedious preparation steps (nanofiber membrane cutting and re-crosslinking) that have been used previously. Due to the open porous networks promising structure stability of the aerogel, the GO sheets content required in the aerogel stacking process was largely reduced, and there was no strict requirement on the pre-freezing temperature and manner in the subsequent freeze-drying process. Furthermore, followed by thermal treating the PAN NFs/GO composite aerogel, fluffy carbon nanofibers/GO aerogels (CNF/GOAs) were obtained, which exhibited ultra-low density (2-3 mg/mL) and great compressibility (80%). After hydrophobic modification of polydimethylsiloxane by vapor deposition, the CNF/GOAs performed high absorption capacity (120-286 wt/wt) toward diverse oils. Owing to the fire-resistance and great elasticity, the CNF/GOAs could be recycled simply by combustion or mechanical squeeze, and still showed great absorption capacity after 10 cycles, which were feasible for large scale application.


Assuntos
Carbono/química , Géis/química , Nanocompostos/química , Óleos , Poluentes Químicos da Água , Absorção Fisico-Química , Grafite/química , Nanofibras/química , Óleos/química , Óleos/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos
8.
J Colloid Interface Sci ; 535: 255-264, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312951

RESUMO

A novel iron-doped chitosan electrospun nanofiber mat (Fe@CTS ENM) was synthesized, which was proven to be effective for the removal of arsenite (As(III)) from water at neutral pH condition. The physiochemical properties and adsorption mechanism were explored by SEM-EDS and X-ray photoelectron spectroscopy (XPS). Batch adsorption experiments were carried out to evaluate the As(III) adsorption performance of the Fe@CTS ENM with various process parameters, such as adsorbent dose, solution pH, initial As(III) concentration, contact time, ionic strength, coexisting anions, and natural organic matter. The experimental results indicated that the maximum adsorption capacity was up to 36.1 mg g-1. Especially, when the adsorbent dosage was higher than 0.3 g L-1, the As(III) concentration was reduced from 100 µg L-1 to less than 10 µg L-1, which indicated the Fe@CTS ENM could effectively remove trace As(III) from water over a wide pH range (from 3.3 to 7.5). Kinetics study demonstrated that the adsorption equilibrium was achieved within 2.0 h, corresponding to a fast uptake of As(III). The presence of common co-ions and humic acid had little effect on the As(III) adsorption. XPS analysis suggested that the FeO, COH, COC and CN groups on the adsorbent surface play dominant roles in the adsorption of As(III). Adsorption-desorption regeneration test further demonstrated that no appreciable loss in the adsorption capacities was observed, which confirmed that the Fe@CTS ENM maintained a desirable life cycle that was free of complex synthesis processes, expensive and toxic materials, qualifying it as an efficient and low-cost As(III) adsorbent.

9.
Sci Rep ; 6: 32480, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572634

RESUMO

An environment-friendly iron functionalized chitosan elctrospun nanofiber (ICS-ENF) was synthesized for trace arsenate removal from water. The ICS-ENF was fabricated by electrospinning a mixture of chitosan, PEO and Fe(3+) followed by crosslinking with ammonia vapor. The physicochemical properties of ICS-ENF were characterized by FESEM, TEM-EDX and XRD. The ICS-ENF was found to be highly effective for As(V) adsorption at neutral pH. The As(V) adsorption occurred rapidly and achieved equilibrium within 100 min, which was well fitted by pseudo-second-order kinetics model. The As(V) adsorption decreased with increased ionic strength, suggesting an outer-sphere complexation of As(V) on ICS-ENF. Freundlich model well described the adsorption isotherm, and the maximum adsorption capacity was up to 11.2 mg/g at pH 7.2. Coexisting anions of chloride and sulfate showed negligible influence on As(V) removal, but phosphate and silicate significantly reduced As(V) adsorption by competing for adsorption sites. FTIR and XPS analysis demonstrated -NH, -OH and C-O were responsible for As(V) uptake. ICS-ENF was easily regenerated using 0.003 M NaOH, and the removal rate remained above 98% after ten successively adsorption-desorption recycles. This study extends the potential applicability of electrospun nanofibers for water purification and provides a promising approach for As(V) removal from water.


Assuntos
Arseniatos/toxicidade , Nanofibras/química , Purificação da Água , Água/química , Adsorção , Arseniatos/química , Quitosana/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
10.
ACS Appl Mater Interfaces ; 7(27): 14573-83, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26079116

RESUMO

Novel Fe3O4/polyacrylonitrile (PAN) composite nanofibers (NFs) were prepared by a simple two-step process, an electrospinning and solvothermal method. Characterization by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) demonstrated formation of a uniform nanoparticles coating (about 20 nm in thickness) on the PAN nanofiber backbone. The coating was constructed by well-crystallized cubic phase Fe3O4 nanoparticles as examined by X-ray diffraction spectroscopy (XRD). The coating doubled the specific surface area of NFs, from 8.4 to 17.8 m2 g(-1), as confirmed by nitrogen sorption isotherm analysis. To evaluate the feasibility of Fe3O4/PAN composite NFs as a potential adsorbent for antibiotic removal, batch adsorption experiments were conducted using tetracycline (TC) as the model antibiotic molecule. The results showed that Fe3O4/PAN composite NFs were effective in removing TC with no impactful loss of Fe in the pH regime of environmental interest (5-8). The adsorption of TC onto Fe3O4/PAN composite NFs better fitted the pseudo-second-order kinetics model, and the maximum adsorption capacity calculated from Langmuir isotherm model was 257.07 mg g(-1) at pH 6. The composite NFs also exhibited good regenerability over repeated adsorption/desorption cycles. Surface complexation between TC and the composite NFs contributed most to the adsorption as elucidated by X-ray photoelectron spectroscopy (XPS). This highly effective and novel adsorbent can be easily modularized and separated, promising its huge potential in drinking and wastewater treatment for antibiotic removal.


Assuntos
Resinas Acrílicas/química , Nanopartículas de Magnetita/química , Nanofibras/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Galvanoplastia/métodos , Nanopartículas de Magnetita/ultraestrutura , Teste de Materiais , Membranas Artificiais , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Tamanho da Partícula , Tetraciclina/química , Ultrafiltração/métodos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA