Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 27, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650452

RESUMO

BACKGROUND: As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS: N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS: Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Clorofila A , Nitrogênio/metabolismo , Chá/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 21(1): 506, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727870

RESUMO

BACKGROUND: Nitrogen (N) fertilizer is commonly considered as one of the most important limiting factors in the agricultural production. As a result, a large amount of N fertilizer is used to improve the yield in modern tea production. Unfortunately, the large amount of N fertilizer input has led to increased plant nitrogen-tolerance and decreased amplitude of yield improvement, which results in significant N loss, energy waste and environment pollution. However, the effects of N-deficiency on the metabolic profiles of tea leaves and roots are not well understood. RESULTS: In this study, seedlings of Camellia sinensis (L.) O. Kuntze Chunlv 2 were treated with 3 mM NH4NO3 (Control) or without NH4NO3 (N-deficiency) for 4 months by sandy culture. The results suggested that N-deficiency induced tea leaf chlorosis, impaired biomass accumulation, decreased the leaf chlorophyll content and N absorption when they were compared to the Control samples. The untargeted metabolomics based on GC-TOF/MS approach revealed a discrimination of the metabolic profiles between N-deficient tea leaves and roots. The identification and classification of the altered metabolites indicated that N deficiency upregulated the relative abundances of most phenylpropanoids and organic acids, while downregulated the relative abundances of most amino acids in tea leaves. Differentially, N-deficiency induced the accumulation of most carbohydrates, organic acids and amino acids in tea roots. The potential biomarkers screened in N-deficient leaves compared to Control implied that N deficiency might reduce the tea quality. Unlike the N-deficient leaves, the potential biomarkers in N-deficient roots indicated an improved stress response might occur in tea roots. CONCLUSIONS: The results demonstrated N deficiency had different effects on the primary and secondary metabolism in tea leaves and roots. The findings of this study will facilitate a comprehensive understanding of the N-deficient tea plants and provide a valuable reference for the optimized N nutrient management and the sustainable development in the tea plantations.


Assuntos
Camellia sinensis/química , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Nitrogênio/deficiência , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Cromatografia Gasosa , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Espectrometria de Massas , Metaboloma , Metabolômica , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento
3.
Bot Stud ; 57(1): 37, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28597447

RESUMO

BACKGROUND: Tea plant is famed in humid and sub-humid of tropical regions, sub-tropical regions, and is a leaf-harvested crop. Nitrogen is the most important nutrient for increasing quality of tea leaves. Therefore, large amounts of nitrogen fertilizer are increasingly applied by tea farmers. Appropriate application of nitrogen fertilizer aroused people's concern. This research of physiological response to N deficiency stress will be helpful for appropriate application of nitrogen fertilizer for tea farmers and elucidate a mechanistic basis for the reductions in carbon dioxide (CO2) assimilation. RESULTS: To elucidate a mechanistic basis for the reductions in carbon dioxide (CO2) assimilation under nitrogen (N) deficiency tea leaves, changes in chlorophyll (Chl), carbohydrates, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and chlorophyll fluorescence transient were examined together with six N treatment (0, 50, 100, 300, 1200 or 6000 µM N). Root, stem and leaves dry weight (DW) increased as N supply increased from 0 to 300 µM, then remained unchanged. The reductions in CO2 assimilation of N-deficient leaves paralleled with high intercellular CO2 concentration. Rubisco activity, protein and Chl content increased linearly or curvilinearly over the range of leaf N content examined except unchanged as leaf N from 2.15 to 2.79 g m-2. Chlorophyll fluorescence transient from N-deficient leaves displayed a depression at the P-step, accompanied by a new step at about 150 µs (L-step). Fv/Fm, REo/ETo, ETo/ABS, Sm, ETo/CSo, PIabs, PItot, abs, were decreased in N-deficient leaves but increased DIo/CSo, DIo/RC and DIo/ABS. Regressive analysis showed that CO2 assimilation decreased linearly or curvilinearly with decreasing initial rubisco, PIabs and Leaf Chl, respectively. Therefore, we concluded the decreased photosynthetic electron transport capacity, leaf chl content and initial rubisco activity are probably the main factors contributing to decreased CO2 assimilation under N deficiency. CONCLUSIONS: The decreased photosynthetic electron transport capacity, leaf Chl content and initial rubisco activity are probably the main factors contributing to decreased CO2 assimilation under N deficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA