RESUMO
As the population ages, Alzheimer's disease (AD), the most common neurodegenerative disease in elderly people, will impose social and economic burdens to the world. Currently approved drugs for the treatment of AD including cholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and an N-methyl-D-aspartic acid receptor antagonist (memantine) are symptomatic but poorly affect the progression of the disease. In recent decades, the concept of amyloid-ß (Aß) cascade and tau hyperphosphorylation leading to AD has dominated AD drug development. However, pharmacotherapies targeting Aß and tau have limited success. It is generally believed that AD is caused by multiple pathological processes resulting from Aß abnormality, tau phosphorylation, neuroinflammation, neurotransmitter dysregulation, and oxidative stress. In this review we updated the recent development of new therapeutics that regulate neurotransmitters, inflammation, lipid metabolism, autophagy, microbiota, circadian rhythm, and disease-modified genes for AD in preclinical research and clinical trials. It is to emphasize the importance of early diagnosis and multiple-target intervention, which may provide a promising outcome for AD treatment.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Idoso , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/uso terapêutico , Humanos , Doenças Neuroinflamatórias/tratamento farmacológico , Fosforilação , Proteínas tau/metabolismoRESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons. Abnormal protein aggregation and impaired protein degradation are believed to contribute to the pathogenesis of this disease. Our previous studies showed that an autophagic flux defect is involved in motor neuron degeneration in the SOD1(G93A) mouse model of ALS. Histone deacetylase 6 (HDAC6) is a class II deacetylase that promotes autophagy by inducing the fusion of autophagosomes to lysosomes. In the present study, we showed that HDAC6 expression was decreased at the onset of disease and became extremely low at the late stage in ALS mice. Using lentivirus-HDAC6 gene injection, we found that HDAC6 overexpression prolonged the lifespan and delayed the motor neuron degeneration in ALS mice. Moreover, HDAC6 induced the formation of autolysosomes and accelerated the degradation of SOD1 protein aggregates in the motor neurons of ALS mice. Collectively, our results indicate that HDAC6 has neuroprotective effects in an animal model of ALS by improving the autophagic flux in motor neurons, and autophagosome-lysosome fusion might be a therapeutic target for ALS.