Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Microb Cell Fact ; 23(1): 76, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461254

RESUMO

BACKGROUND: Aspergillus niger ATCC 20611 is an industrially important fructooligosaccharides (FOS) producer since it produces the ß-fructofuranosidase with superior transglycosylation activity, which is responsible for the conversion of sucrose to FOS accompanied by the by-product (glucose) generation. This study aims to consume glucose to enhance the content of FOS by heterologously expressing glucose oxidase and peroxidase in engineered A. niger. RESULTS: Glucose oxidase was successfully expressed and co-localized with ß-fructofuranosidase in mycelia. These mycelia were applied to synthesis of FOS, which possessed an increased purity of 60.63% from 52.07%. Furthermore, peroxidase was expressed in A. niger and reached 7.70 U/g, which could remove the potential inhibitor of glucose oxidase to facilitate the FOS synthesis. Finally, the glucose oxidase-expressing strain and the peroxidase-expressing strain were jointly used to synthesize FOS, which content achieved 71.00%. CONCLUSIONS: This strategy allows for obtaining high-content FOS by the multiple enzymes expressed in the industrial fungus, avoiding additional purification processes used in the production of oligosaccharides. This study not only facilitated the high-purity FOS synthesis, but also demonstrated the potential of A. niger ATCC 20611 as an enzyme-producing cell factory.


Assuntos
Aspergillus niger , Aspergillus , beta-Frutofuranosidase , Aspergillus niger/genética , Glucose Oxidase/genética , Oligossacarídeos , Peroxidases , Glucose
2.
Mol Microbiol ; 117(5): 1002-1022, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35072962

RESUMO

The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as an excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1-Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1-Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1-Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.


Assuntos
Regulação Fúngica da Expressão Gênica , Fatores de Transcrição , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36690343

RESUMO

The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi. ONE-SENTENCE SUMMARY: The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.


Assuntos
Celulase , Trichoderma , Trametes/genética , Lacase/genética , Lacase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulase/genética , Celulase/metabolismo , Degradação Associada com o Retículo Endoplasmático , Trichoderma/genética , Trichoderma/metabolismo
4.
Microb Cell Fact ; 21(1): 5, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983541

RESUMO

BACKGROUND: The filamentous fungus Trichoderma reesei is a widely used workhorse for cellulase production in industry due to its prominent secretion capacity of extracellular cellulolytic enzymes. However, some key components are not always sufficient in this cellulase cocktail, making the conversion of cellulose-based biomass costly on the industrial scale. Development of strong and efficient promoters would enable cellulase cocktail to be optimized for bioconversion of biomass. RESULTS: In this study, a synthetic hybrid promoter was constructed and applied to optimize the cellulolytic system of T. reesei for efficient saccharification towards corncob residues. Firstly, a series of 5' truncated promoters in different lengths were established based on the strong constitutive promoter Pcdna1. The strongest promoter amongst them was Pcdna1-3 (- 640 to - 1 bp upstream of the translation initiation codon ATG), exhibiting a 1.4-fold higher activity than that of the native cdna1 promoter. Meanwhile, the activation region (- 821 to - 622 bp upstream of the translation initiation codon ATG and devoid of the Cre1-binding sites) of the strong inducible promoter Pcbh1 was cloned and identified to be an amplifier in initiating gene expression. Finally, this activation region was fused to the strongest promoter Pcdna1-3, generating the novel synthetic hybrid promoter Pcc. This engineered promoter Pcc drove strong gene expression by displaying 1.6- and 1.8-fold stronger fluorescence intensity than Pcbh1 and Pcdna1 under the inducible condition using egfp as the reporter gene, respectively. Furthermore, Pcc was applied to overexpress the Aspergillus niger ß-glucosidase BGLA coding gene bglA and the native endoglucanase EG2 coding gene eg2, achieving 43.5-fold BGL activity and 1.2-fold EG activity increase, respectively. Ultimately, to overcome the defects of the native cellulase system in T. reesei, the bglA and eg2 were co-overexpressed under the control of Pcc promoter. The bglA-eg2 double expression strain QPEB70 exhibited a 178% increase in total cellulase activity, whose cellulase system displayed 2.3- and 2.4-fold higher saccharification efficiency towards acid-pretreated and delignified corncob residues than the parental strain, respectively. CONCLUSIONS: The synthetic hybrid promoter Pcc was generated and employed to improve the cellulase system of T. reesei by expressing specific components. Therefore, construction of synthetic hybrid promoters would allow particular cellulase genes to be expressed at desired levels, which is a viable strategy to optimize the cellulolytic enzyme system for efficient biomass bioconversion.


Assuntos
Celulase/genética , Celulase/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Regiões Promotoras Genéticas , Zea mays/metabolismo , Biomassa , Celulose/metabolismo , Proteínas Fúngicas/genética , Zea mays/microbiologia
5.
Biotechnol Lett ; 43(6): 1175-1182, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575897

RESUMO

OBJECTIVE: To achieve continuous production of fructooligosaccharides (FOS) by recycling of the mycelial cells containing the thermal-stable ß-fructofuranosidase in Aspergillus niger without immobilization. RESULTS: The thermal-stable ß-fructofuranosidase FopA-V1 was successfully expressed in A. niger ATCC 20611 under the control of the constitutive promoter PgpdA. The engineered A. niger strain FV1-11 produced the ß-fructofuranosidase with improved thermostability, which remained 91.2% of initial activity at 50 °C for 30 h. Then its mycelial ß-fructofuranosidase was recycled for the synthesis of FOS. It was found that the enzyme still had 79.3% of initial activity after being reused for six consecutive cycles, whereas only 62.3% ß-fructofuranosidase activity was detected in the parental strain ATCC 20611. Meanwhile, the FOS yield of FV1-11 after six consecutive cycles reached 57.1% (w/w), but only 51.0% FOS yield was detected in ATCC 20611. CONCLUSIONS: The thermal-stable ß-fructofuranosidase produced by A. niger can be recycled to achieve continuous synthesis of FOS with high efficiency, providing a powerful and economical strategy for the industrial production of FOS.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Oligossacarídeos/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micélio/genética , Micélio/metabolismo , Regiões Promotoras Genéticas , Engenharia de Proteínas , Termodinâmica , beta-Frutofuranosidase/química
6.
Biotechnol Lett ; 43(2): 495-502, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048255

RESUMO

OBJECTIVE: To construct convenient CRISPR/Cas9-mediated genome editing systems in industrial enzyme-producing fungi Penicillium oxalicum and Trichoderma reesei. RESULTS: Employing the 5S rRNA promoter from Aspergillus niger for guide RNA expression, the ß-glucosidase gene bgl2 in P. oxalicum was deleted using a donor DNA carrying 40-bp homology arms or a donor containing no selectable marker gene. Using a markerless donor DNA as editing template, precise replacement of a small region was achieved in the creA gene. In T. reesei, the A. niger 5S rRNA promoter was less efficient than that in P. oxalicum when used for gene editing. Using a native 5S rRNA promoter, stop codons were introduced into the lae1 coding region using a markerless donor DNA with an editing efficiency of 36.67%. CONCLUSIONS: Efficient genome editing systems were developed in filamentous fungi P. oxalicum and T. reesei by using heterologous or native 5S rRNA promoters for guide RNA expression.


Assuntos
Edição de Genes , Hypocreales/genética , Penicillium/genética , RNA Guia de Cinetoplastídeos/genética , Sistemas CRISPR-Cas/genética , Regiões Promotoras Genéticas/genética , RNA Ribossômico 5S/genética
7.
J Ind Microbiol Biotechnol ; 48(1-2)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33693788

RESUMO

Hyphal morphology is considered to have a close relationship with the production level of secreted proteins by filamentous fungi. In this study, the gul1 gene, which encodes a putative mRNA-binding protein, was disrupted in cellulase-producing fungus Trichoderma reesei. The hyphae of Δgul1 strain produced more lateral branches than the parent strain. Under the condition for cellulase production, disruption of gul1 resulted in smaller mycelial clumps and significantly lower viscosity of fermentation broth. In addition, cellulase production was improved by 22% relative to the parent strain. Transcriptome analysis revealed that a set of genes encoding cell wall remodeling enzymes as well as hydrophobins were differentially expressed in the Δgul1 strain. The results suggest that the regulatory role of gul1 in cell morphogenesis is likely conserved in filamentous fungi. To our knowledge, this is the first report on the engineering of gul1 in an industrially important fungus.


Assuntos
Celulase/biossíntese , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Hypocreales/metabolismo , Parede Celular/metabolismo , Fermentação , Proteínas Fúngicas/genética , Hypocreales/genética , Viscosidade
8.
J Basic Microbiol ; 61(2): 122-132, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393718

RESUMO

The filamentous fungus Trichoderma reesei is an important producer of industrial enzymes, and possesses abundant extracellular protease genes based on the genome sequence data. However, the production of extracellular proteases remains poorly understood. Here, protease production was extensively investigated on different carbon (glucose and lactose) and nitrogen sources ((NH4 )2 SO4 , NaNO3 , peptone, and corn steep liquor). It was found that protease production was dominantly regulated by nitrogen sources. Organic nitrogen sources were beneficial for protease production, while the preferred nitrogen source (NH4 )2 SO4 inhibited the expression of proteases. As for carbon sources, lactose was a more effective inducer than glucose for protease production. The protease activity was further examined by protease inhibitors, which suggested that protease activity was predominantly inhibited by phenylmethanesulfonyl fluoride (PMSF) and slightly suppressed by ethylenediaminetetraacetic acid (EDTA). Moreover, proteomic analysis revealed a total of 29 extracellular proteases, including 13 serine proteases, 6 aspartic proteases, and 10 metalloproteases. In addition, seven proteases were found to be present among all conditions. These results showed the regulatory profile of extracellular protease production in Trichoderma reesei grown on various carbon and nitrogen sources, which will facilitate the development of T. reesei to be an effective workhorse for enzyme or high-value protein production in industry.


Assuntos
Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Hypocreales/metabolismo , Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo , Carbono/química , Meios de Cultura/metabolismo , Proteínas Fúngicas/classificação , Hypocreales/crescimento & desenvolvimento , Nitrogênio/química , Peptídeo Hidrolases/classificação , Inibidores de Proteases/metabolismo , Proteômica
9.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443450

RESUMO

Trichoderma reesei is a biotechnologically important filamentous fungus with the remarkable ability to secrete large amounts of enzymes, whose production is strongly affected by both the carbon and nitrogen sources. While the carbon metabolism regulators are extensively studied, the regulation of enzyme production by the nitrogen metabolism regulators is still poorly understood. In this study, the GATA transcription factor Are1, which is an orthologue of the Aspergillus global nitrogen regulator AREA, was identified and characterized for its functions in regulation of both protease and cellulase production in T. reesei. Deletion of the are1 gene abolished the capability to secrete proteases, and complementation of the are1 gene rescued the ability to produce proteases. Quantitative RT-PCR analysis revealed that the transcripts of protease genes apw1 and apw2 were also significantly reduced in the Δare1 strain when grown in the medium with peptone as the nitrogen source. In addition, deletion of are1 resulted in decreased cellulase production in the presence of (NH4)2SO4. Consistent with the reduction of cellulase production, the transcription levels of the major cellulase genes, including cbh1, cbh2, egl1, and egl2, were dramatically decreased in Δare1. Sequence analysis showed that all promoter regions of the tested protease and cellulase genes contain the consensus GATA elements. However, the expression levels of the major cellulase transcription activator Xyr1 and the repressor Cre1 had no significant difference between Δare1 and the parental strain QM9414, indicating that the regulatory mechanism deserves further investigation. Taken together, these results demonstrate the important role of Are1 in the regulation of protease and cellulase production in T. reesei, although these processes depend on the kind of nitrogen sources. The findings in this study contribute to the understanding of the regulation network of carbon and nitrogen sources in filamentous fungi.


Assuntos
Celulases/genética , Regulação Fúngica da Expressão Gênica , Peptídeo Hidrolases/genética , Esterol O-Aciltransferase/metabolismo , Fatores de Transcrição/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Celulases/metabolismo , Espaço Extracelular , Deleção de Genes , Peptídeo Hidrolases/metabolismo , Fenótipo , Filogenia , Trichoderma/classificação
10.
Biotechnol Lett ; 40(7): 1119-1126, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29779122

RESUMO

OBJECTIVE: Improve the hydrolysis efficiency of the Trichoderma reesei cellulase system by heterologously expressing cellobiohydrolase Cel7A (Te-Cel7A) from the thermophilic fungus Talaromyces emersonii. RESULTS: Te-Cel7A was expressed in T. reesei under control of the cdna1 promoter and the generated transformant QTC14 could successfully secrete Te-Cel7A into the supernatant using glucose as carbon source. The recombinant Te-Cel7A had a temperature optimum at 65 °C and an optimal pH of 5, which were similar to those from the native host. The culture supernatant of QTC14 exhibited a 28.8% enhancement in cellobiohydrolase activity and a 65.2% increase in filter paper activity relative to that of the parental strain QP4. Moreover, the QTC14 cellulase system showed higher thermal stability than that of the parental strain QP4. In the saccharification of delignified corncob residue, the cellulose conversion of QTC14 showed 13.9% higher than that of QP4 at the end of reaction. CONCLUSIONS: The thermophilic fungus-derived cellulases could be efficiently expressed by T. reesei and the recombinant cellulases had potential applications for biomass conversion.


Assuntos
Celulases/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/metabolismo , Talaromyces/enzimologia , Trichoderma/genética , Zea mays/química , Biomassa , Celulases/química , Celulases/genética , Celulases/isolamento & purificação , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Talaromyces/genética
11.
PLoS Genet ; 11(9): e1005509, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26360497

RESUMO

Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular ß-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a "seesaw model" in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors.


Assuntos
Celulase/genética , Genes Fúngicos , Penicillium/enzimologia , Celulase/metabolismo , Celulose/metabolismo , Regulação Enzimológica da Expressão Gênica , Redes Reguladoras de Genes , Penicillium/genética , Penicillium/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma
12.
Microb Cell Fact ; 16(1): 207, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162107

RESUMO

BACKGROUND: Trichoderma reesei is one of the most important fungi utilized for cellulase production. However, its cellulase system has been proven to be present in suboptimal ratio for deconstruction of lignocellulosic substrates. Although previous enzymatic optimization studies have acquired different types of in vitro synthetic mixtures for efficient lignocellulose hydrolysis, production of in vivo optimized cellulase mixtures by industrial strains remains one of the obstacles to reduce enzyme cost in the biofuels production from lignocellulosic biomass. RESULTS: In this study, we used a systematic genetic strategy based on the pyrG marker to overexpress the major cellulase components in a hypercellulolytic T. reesei strain and produce the highly efficient cellulase mixture for saccharification of corncob residues. We found that overexpression of CBH2 exhibited a 32-fold increase in the transcription level and a comparable protein level to CBH1, the most abundant secreted protein in T. reesei, but did not contribute much to the cellulolytic ability. However, when EG2 was overexpressed with a 46-fold increase in the transcription level and a comparable protein level to CBH2, the engineered strain QPE36 showed a 1.5-fold enhancement in the total cellulase activity (up to 5.8 U/mL FPA) and a significant promotion of saccharification efficiency towards differently pretreated corncob residues. To assist the following genetic manipulations, the marker pyrG was successfully excised by homologous recombination based on resistance to 5-FOA. Furthermore, BGL1 was overexpressed in the EG2 overexpression strain QE51 (pyrG-excised) and a 11.6-fold increase in BGL activity was obtained. The EG2-BGL1 double overexpression strain QEB4 displayed a remarkable enhancement of cellulolytic ability on pretreated corncob residues. Especially, a nearly complete cellulose conversion (94.2%) was found for the delignified corncob residues after 48 h enzymatic saccharification. CONCLUSIONS: These results demonstrate that genetically exploiting the potentials of T. reesei endogenous cellulases to produce highly efficient cellulase mixtures is a powerful strategy to promote the saccharification efficiency, which will eventually facilitate cost reduction for lignocellulose-based biofuels.


Assuntos
Celulase/genética , Trichoderma/química , Zea mays/química , Hidrólise
13.
Fungal Genet Biol ; 94: 32-46, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27387217

RESUMO

The morphological development of fungi is a complex process and is often coupled with secondary metabolite production. In this study, we assessed the function of putative methyltransferase LaeA and transcription factor CreA in controlling asexual development and secondary metabolic gene cluster expression in Penicillium oxalicum. The deletion of laeA (ΔlaeA) impaired the conidiation in P. oxalicum, with a downregulated expression of brlA. Overexpression of P. oxalicum brlA in ΔlaeA could upregulate brlA and abaA remarkably, but could not rescue the conidiation defect; therefore, brlA and abaA expression were necessary but not sufficient for conidiation. Deletion of creA in ΔlaeA background (ΔlaeAΔcreA) blocked conidiation with a white fluffy phenotype. Nutrient-rich medium could not rescue developmental defects in ΔlaeAΔcreA mutant but could rescue defects in ΔlaeA. Expression of 10 genes, namely, albA/wA, abrB/yA, arpA, aygA, arpA-like, arpB, arpB-like, rodA, rodA-like, and rodB, for pigmentation and spore wall protein genes was silenced in ΔlaeAΔcreA, whereas only six of them were downregulated in ΔlaeA. Among the 28 secondary metabolism gene clusters in P. oxalicum, four secondary metabolism gene clusters were silenced in ΔlaeA and two were also silenced in ΔbrlA mutant. A total of 10 physically linked and coregulated genes were distributed over five chromosomes in ΔlaeA. Six of these genes were located in subtelomeric regions, thus demonstrating a positional bias for LaeA-regulated clusters toward subtelomeric regions. All of silenced clusters located in subtelomeric regions were derepressed in ΔlaeAΔcreA, hence showing that lack of CreA could remediate the repression of gene clusters in ΔlaeA background. Results show that both putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Metiltransferases/metabolismo , Família Multigênica , Penicillium/enzimologia , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Estruturas Fúngicas , Deleção de Genes , Inativação Gênica , Metiltransferases/genética , Mutação , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Fatores de Transcrição/genética
14.
Phys Chem Chem Phys ; 18(15): 9999-10004, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004602

RESUMO

A non-aqueous solution of tetra-n-butylammonium fluoride (TBAF) in ethylene glycol has been tried for the first time as a supporting electrolyte for the electropolymerization of 3-aminophenylboronic acid (APBA). Unlike the traditional acidic aqueous solution, the present medium needs no exogenous protons; moreover, the presence of CF3COOH is found to be unfavorable for the polymerization. The protons are in situ generated by the reaction between the boronic acid group on APBA and 1,2-dihydroxyl on ethylene glycol. So, ethylene glycol serves as not only the solvent but also the proton source. As a part of the supporting electrolyte, F(-) is found to be involved in the electrochemical synthesis of poly(3-aminophenylboronic acid) (PAPBA), but it is not indispensable. Studies on the electropolymerization process indicate that the size of the ions in the electrolyte affects the rate of the doping/dedoping process. The smaller the cation, the easier the doping/dedoping process, and the better the stability of the grown film. As demonstrated by Fourier transform infrared spectra, UV-vis spectra, and scanning electron microscopy, the obtained PAPBA is a cross-linked nanoporous polymer membrane that has a good adherence to the glassy carbon electrode.

15.
Biotechnol Biofuels Bioprod ; 17(1): 22, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342915

RESUMO

BACKGROUND: The CRISPR/Cas9 technology is being employed as a convenient tool for genetic engineering of the industrially important filamentous fungus Trichoderma reesei. However, multiplex gene editing is still constrained by the sgRNA processing capability, hindering strain improvement of T. reesei for the production of lignocellulose-degrading enzymes and recombinant proteins. RESULTS: Here, a CRISPR/Cas9 system based on a multiple sgRNA processing platform was established for genome editing in T. reesei. The platform contains the arrayed tRNA-sgRNA architecture directed by a 5S rRNA promoter to generate multiple sgRNAs from a single transcript by the endogenous tRNA processing system. With this system, two sgRNAs targeting cre1 (encoding the carbon catabolite repressor 1) were designed and the precise deletion of cre1 was obtained, demonstrating the efficiency of sgRNAs processing in the tRNA-sgRNA architecture. Moreover, overexpression of xyr1-A824V (encoding a key activator for cellulase/xylanase expression) at the ace1 (encoding a repressor for cellulase/xylanase expression) locus was achieved by designing two sgRNAs targeting ace1 in the system, resulting in the significantly enhanced production of cellulase (up to 1- and 18-fold on the Avicel and glucose, respectively) and xylanase (up to 11- and 41-fold on the Avicel and glucose, respectively). Furthermore, heterologous expression of the glucose oxidase gene from Aspergillus niger ATCC 9029 at the cbh1 locus with the simultaneous deletion of cbh1 and cbh2 (two cellobiohydrolase coding genes) by designing four sgRNAs targeting cbh1 and cbh2 in the system was acquired, and the glucose oxidase produced by T. reesei reached 43.77 U/mL. Besides, it was found the ER-associated protein degradation (ERAD) level was decreased in the glucose oxidase-producing strain, which was likely due to the reduction of secretion pressure by deletion of the major endogenous cellulase-encoding genes. CONCLUSIONS: The tRNA-gRNA array-based CRISPR-Cas9 editing system was successfully developed in T. reesei. This system would accelerate engineering of T. reesei for high-level production of enzymes including lignocellulose-degrading enzymes and other recombinant enzymes. Furthermore, it would expand the CRISPR toolbox for fungal genome editing and synthetic biology.

16.
J Fungi (Basel) ; 9(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36675895

RESUMO

Trichoderma reesei is a powerful fungal cell factory for the production of cellulolytic enzymes due to its outstanding protein secretion capacity. Endoplasmic reticulum-associated degradation (ERAD) plays an integral role in protein secretion that responds to secretion pressure and removes misfolded proteins. However, the role of ERAD in fungal growth and endogenous protein secretion, particularly cellulase secretion, remains poorly understood in T. reesei. Here, we investigated the ability of T. reesei to grow under different stresses and to secrete cellulases by disrupting three major genes (hrd1, hrd3 and der1) involved in the critical parts of the ERAD pathway. Under the ER stress induced by high concentrations of DTT, knockout of hrd1, hrd3 and der1 resulted in severely impaired growth, and the mutants Δhrd1 and Δhrd3 exhibited high sensitivity to the cell wall-disturbing agents, CFW and CR. In addition, the absence of either hrd3 or der1 led to the decreased heat tolerance of this fungus. These mutants showed significant differences in the secretion of cellulases compared to the parental strain QM9414. During fermentation, the secretion of endoglucanase in the mutants was essentially consistent with that of the parental strain, while cellobiohydrolase and ß-glucosidase were declined. It was further discovered that the transcription levels of the endoglucanase-encoding genes (eg1 and eg2) and the cellobiohydrolase-encoding gene (cbh1) were not remarkedly changed. However, the ß-glucosidase-encoding gene (bgl1) was significantly downregulated in the ERAD-deficient mutants, which was presumably due to the activation of a proposed feedback mechanism, repression under secretion stress (RESS). Taken together, our results indicate that a defective ERAD pathway negatively affects fungal growth and cellulase secretion, which provides a novel insight into the cellulase secretion mechanism in T. reesei.

17.
Biotechnol Biofuels Bioprod ; 16(1): 23, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782304

RESUMO

BACKGROUND: Filamentous fungi are extensively exploited as important enzyme producers due to the superior secretory capability. However, the complexity of their secretomes greatly impairs the titer and purity of heterologous enzymes. Meanwhile, high-efficient evaluation and production of bulk enzymes, such as biomass-degrading enzymes, necessitate constructing powerful expression systems for bio-refinery applications. RESULTS: A novel sucrose-inducible expression system based on the host strain Aspergillus niger ATCC 20611 and the ß-fructofuranosidase promoter (PfopA) was constructed. A. niger ATCC 20611 preferentially utilized sucrose for rapid growth and ß-fructofuranosidase production. Its secretory background was relatively clean because ß-fructofuranosidase, the key enzyme responsible for sucrose utilization, was essentially not secreted into the medium and the extracellular protease activity was low. Furthermore, the PfopA promoter showed a sucrose concentration-dependent induction pattern and was not subject to glucose repression. Moreover, the strength of PfopA was 7.68-fold higher than that of the commonly used glyceraldehyde-3-phosphate dehydrogenase promoter (PgpdA) with enhanced green fluorescence protein (EGFP) as a reporter. Thus, A. niger ATCC 20611 coupled with the PfopA promoter was used as an expression system to express a ß-glucosidase gene (bgla) from A. niger C112, allowing the production of ß-glucosidase at a titer of 17.84 U/mL. The crude ß-glucosidase preparation could remarkably improve glucose yield in the saccharification of pretreated corncob residues when added to the cellulase mixture of Trichoderma reesei QM9414. The efficacy of this expression system was further demonstrated by co-expressing the T. reesei-derived chitinase Chi46 and ß-N-acetylglucosaminidase Nag1 to obtain an efficient chitin-degrading enzyme cocktail, which could achieve the production of N-acetyl-D-glucosamine from colloidal chitin with a conversion ratio of 91.83%. Besides, the purity of the above-secreted biomass-degrading enzymes in the crude culture supernatant was over 86%. CONCLUSIONS: This PfopA-driven expression system expands the genetic toolbox of A. niger and broadens the application field of the traditional fructo-oligosaccharides-producing strain A. niger ATCC 20611, advancing it to become a high-performing enzyme-producing cell factory. In particular, the sucrose-inducible expression system possessed the capacity to produce biomass-degrading enzymes at a high level and evade endogenous protein interference, providing a potential purification-free enzyme production platform for bio-refinery applications.

18.
Biotechnol Biofuels Bioprod ; 15(1): 142, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528622

RESUMO

BACKGROUND: The filamentous fungus Trichoderma reesei is extensively used for the industrial-scale cellulase production. It has been well known that the transcription factor Xyr1 plays an important role in the regulatory network controlling cellulase gene expression. However, the role of Xyr1 in the regulation of cellulase expression has not been comprehensively elucidated, which hinders further improvement of lignocellulolytic enzyme production. RESULTS: Here, the expression dosage of xyr1 was tailored in T. reesei by differentially overexpressing the xyr1 gene under the control of three strong promoters (Pegl2, Pcbh1, and Pcdna1), and the transcript abundance of xyr1 was elevated 5.8-, 12.6-, and 47.2-fold, respectively. We found expression of cellulase genes was significantly increased in the Pegl2-driven xyr1 overexpression strain QE2X, whereas relatively low in the Pcbh1- and Pcdna1-driven overexpression strains. We also found that the Pegl2-driven overexpression of xyr1 caused a more significant opening of chromatin in the core promoter region of the prominent cellulase genes. Furthermore, the cellulase activity showed a 3.2-fold increase in the strain QE2X, while insignificant improvement in the Pcbh1- and Pcdna1-driven strains. Finally, the saccharification efficiency toward acid-pretreated corncob residues containing high-content lignin by the crude enzyme from QE2X was increased by 57.2% compared to that from the parental strain. Moreover, LC-MS/MS and RT-qPCR analysis revealed that expression of accessory proteins (Cip1, Cip2, Swo1, and LPMOs) was greatly improved in QE2X, which partly explained the promoting effect of the Pegl2-driven overexpression on enzymatic hydrolysis of lignocellulose biomass. CONCLUSIONS: Our results underpin that the precise tailoring expression of xyr1 is essential for highly efficient cellulase synthesis, which provide new insights into the role of Xyr1 in regulating cellulase expression in T. reesei. Moreover, these results also provides a prospective strategy for strain improvement to enhance the lignocellulolytic enzyme production for use in biorefinery applications.

19.
Enzyme Microb Technol ; 155: 109993, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066395

RESUMO

Trichoderma reesei is widely used as a protein production host due to its high natural capacity to secrete enzymes. Nonetheless, the complexity and abundance of secretome limit its extensive application in heterologous protein production. Here, a novel heterologous protein expression system with remarkable reduction of undesired background proteins was developed by deletion of the p53-like transcriptional factor Vib1. The vib1-deletion strain (Δvib1) exhibited a dramatic decrease in cellulase and protease secretion, whereas the growth of Δvib1 was comparable to that of the parental strain QM53, indicating that Δvib1 possesses a great potential for heterologous protein production. Therefore, the Aspergillus niger ß-glucosidase-coding gene bglA was expressed in Δvib1 and QM53 to demonstrate the feasibility of Δvib1 as the protein production host. The bglA-expression strains QVB-1 (Δvib1:bglA) and Q53B-1 (QM53:bglA) produced approximately 17.2 IU/mg and 14.7 IU/mg of ß-glucosidase activity, respectively. In addition, the ß-glucosidase activity in the supernatant of QVB-1 remained constant after 4-week incubation whereas that of Q53B-1 decreased by more than 60%. Furthermore, transcription levels of the genes involved in the unfolded protein response were relatively decreased in Δvib1 compared with that in QM53, indicating the increased protein folding capacity of the endoplasmic reticulum in Δvib1. These results demonstrate the feasibility of using T. reesei Δvib1 as the host for heterologous protein production.


Assuntos
Celulase , Proteínas Fúngicas/genética , Trichoderma , Aspergillus niger/genética , Aspergillus niger/metabolismo , Celulase/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
20.
Mol Biol Rep ; 38(6): 4145-51, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21108042

RESUMO

Agrobacterium-mediated T-DNA transfer has been proven to be an efficient strategy for insertional mutagenesis and elucidation of gene function in filamentous fungi. The implementation of large-scale T-DNA insertional mutagenesis requires the development of high-efficient transformation and high-throughput screening procedures. Here, using green fluorescent protein (GFP) as a vital marker, a highly efficient T-DNA-based mutagenesis and screening system was developed in Trichoderma reesei. The uridine auxotrophic T. reesei M23 as the host was transformed with A. tumefaciens EH105 strain harboring a binary vector pC-OEP, which beared the pyrG gene for primary selection on minimal medium without uridine and the egfp gene for fluorescence-based rapid screening of the mitotically stable transformants. The efficiency of transformation was up to 10-20 transformants per 10(5) target conidia. Microscopic examination revealed strong GFP expression and fluorescence emission in conidia, growing hyphae and mycelia. An effective and convenient screening procedure using 96-well plates and multilabel counter for fluorescence intensity counting was developed to rapidly identify the T-DNA tagged T. reesei mutants. Furthermore, the presence of T-DNA integration at random sites in the genome was confirmed by Southern blot analysis. This report of the T-DNA-based mutagenesis and rapid screening system using GFP as a vital reporter provides a promising strategy to speeding up the genome-scale T-DNA insertional mutagenesis and functional genomics analysis of this cellulolytic fungus T. reesei.


Assuntos
DNA Bacteriano/genética , Genes Reporter/genética , Testes Genéticos/métodos , Proteínas de Fluorescência Verde/metabolismo , Microbiologia Industrial , Mutagênese Insercional/métodos , Trichoderma/genética , DNA Fúngico/genética , Vetores Genéticos/genética , Genoma Fúngico/genética , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/metabolismo , Rhizobium/genética , Transformação Genética , Trichoderma/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA