Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Am Chem Soc ; 146(19): 12969-12975, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38625041

RESUMO

Separation of methanol/benzene azeotrope mixtures is very challenging not only by the conventional distillation technique but also by adsorbents. In this work, we design and synthesize a flexible Ca-based metal-organic framework MAF-58 consisting of cheap raw materials. MAF-58 shows selective methanol-induced pore-opening flexibility. Although the opened pores are large enough to accommodate benzene molecules, MAF-58 shows methanol/benzene molecular sieving with ultrahigh experimental selectivity, giving 5.1 mmol g-1 high-purity (99.99%+) methanol and 2.0 mmol g-1 high-purity (99.97%+) benzene in a single adsorption/desorption cycle. Computational simulations reveal that the preferentially adsorbed, coordinated methanol molecules act as the gating component to selectively block the diffusion of benzene, offering a new gating adsorption mechanism.

2.
Acc Chem Res ; 55(20): 2966-2977, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36067359

RESUMO

Chemical separations, mostly based on heat-driven techniques such as distillation, account for a large portion of the world's energy consumption. In principle, differential adsorption is a more energy-efficient separation method, but conventional adsorbent materials are still not effective for many industry-relevant mixtures. Porous coordination polymers (PCPs), or metal-organic frameworks (MOFs), are attractive for their well-defined, designable, modifiable, and flexible structures connecting to various potential applications. While the importance of the structural flexibility of MOFs in adsorption-based functions has been demonstrated, the understanding of this special feature is still in its infancy and mostly stays at the periodic structural transformation at the equilibrium state and the special shapes of single-component adsorption isotherms. There are many confusions about the categorization and roles of various types of flexibility. This Account discusses the role of flexibility of MOFs for adsorptive separation, mainly from the thermodynamic and kinetic points of view.As the classic type of framework flexibility, guest-driven structural transformations and the corresponding adsorption isotherms can be thermodynamically described by the energies of the host-guest system. The highly guest-specific pore-opening action showing contrasting single-component adsorption isotherms is regarded as a strategy for achieving molecular sieving without the need for aperture size control, but its effect and role for mixture separation are still controversial. Quantitative mixture adsorption/separation experiments showed that the common periodic (cooperative) pore-opening action leads to coadsorption of molecules smaller than the opened aperture, while the aperiodic (noncooperative) one can achieve inversed molecular sieving under a thermodynamic mechanism.The energy barrier and structure in the nonequilibrium state are also important for flexibility and adsorption/separation. With suitable energy barriers between metastable structures, new types of framework flexibility such as aperture gating can be realized. While kinetically controlled gating flexibility is usually ignored because of the difficulty of characterization or considered as disadvantageous for separation because of the variable aperture size, it plays a critical role in most kinetic separation systems, including adsorbents conventionally regarded as rigid. With the concept of gating flexibility, the meanings of aperture and guest sizes for judging molecular sieving need to be reconsidered. Gating flexibility depends on not only the host itself but also the guest, the host-guest interaction, and the external environment such as temperature, which can be rationally tuned to achieve special adsorption/separation behaviors such as inversed temperature dependence, molecular sieving, and even inversed thermodynamic selectivity. The comprehensive understanding of the thermodynamic and kinetic bases of flexibility will give a new horizon for next-generation separation materials beyond MOFs and adsorbents.


Assuntos
Estruturas Metalorgânicas , Adsorção , Estruturas Metalorgânicas/química , Porosidade , Temperatura , Termodinâmica
3.
Chirality ; 35(6): 376-386, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924145

RESUMO

Studies on the differences between chiral pesticide enantiomers have caused widespread concern in the last decade. In the current work, the selective behaviors and different biological activities of paclobutrazol enantiomers during Chinese cabbage pickling process were evaluated. Results of degradation kinetics indicated that when paclobutrazol reside in raw material (Chinese cabbage) and was introduced into the pickling process, the degradation rates of the two paclobutrazol enantiomers were significantly different, the half-lives of (2R, 3R)-paclobutrazol (R-paclobutrazol) and (2S, 3S)-paclobutrazol (S-paclobutrazol) were 18.24 and 6.19 d, respectively. Besides, the conversion between the two enantiomers could also be observed, and the conversion rate of R-paclobutrazol to S-paclobutrazol was slower than that of reverse process. In addition, from the analysis of 16S rRNA and ITS sequencing, we inferred that the degradation of paclobutrazol was probably due to the presence of Pseudomonas and Serratia. Moreover, there has a significant difference in biological activity between R-paclobutrazol and S-paclobutrazol and shown an obviously enantiomeric effects on microbial community composition of pickling system. Besides, the analysis of microbial community displayed R-paclobutrazol might inhibit the growth of Erwinia (a sort of plant pathogens). Results from this study served to enhance our understanding of chiral pesticide residues on food safety and the potential risks to human health.


Assuntos
Brassica , Praguicidas , Humanos , RNA Ribossômico 16S , Estereoisomerismo
4.
Angew Chem Int Ed Engl ; 62(24): e202303374, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040094

RESUMO

The ethanol/water separation challenge highlights the adsorption capacity/selectivity trade-off problem. We show that the target guest can serve as a gating component of the host to block the undesired guest, giving molecular sieving effect for the adsorbent possessing large pores. Two hydrophilic/water-stable metal azolate frameworks were designed to compare the effects of gating and pore-opening flexibility. Large amounts (up to 28.7 mmol g-1 ) of ethanol with fuel-grade (99.5 %+) and even higher purities (99.9999 %+) can be produced in a single adsorption process from not only 95 : 5 but also 10 : 90 ethanol/water mixtures. More interestingly, the pore-opening adsorbent possessing large pore apertures showed not only high water adsorption capacity but also exceptionally high water/ethanol selectivity characteristic of molecular sieving. Computational simulations demonstrated the critical role of guest-anchoring aperture for the guest-dominated gating process.

5.
Nat Mater ; 20(8): 1113-1120, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33859384

RESUMO

Metastable 1T'-phase transition metal dichalcogenides (1T'-TMDs) with semi-metallic natures have attracted increasing interest owing to their uniquely distorted structures and fascinating phase-dependent physicochemical properties. However, the synthesis of high-quality metastable 1T'-TMD crystals, especially for the group VIB TMDs, remains a challenge. Here, we report a general synthetic method for the large-scale preparation of metastable 1T'-phase group VIB TMDs, including WS2, WSe2, MoS2, MoSe2, WS2xSe2(1-x) and MoS2xSe2(1-x). We solve the crystal structures of 1T'-WS2, -WSe2, -MoS2 and -MoSe2 with single-crystal X-ray diffraction. The as-prepared 1T'-WS2 exhibits thickness-dependent intrinsic superconductivity, showing critical transition temperatures of 8.6 K for the thickness of 90.1 nm and 5.7 K for the single layer, which we attribute to the high intrinsic carrier concentration and the semi-metallic nature of 1T'-WS2. This synthesis method will allow a more systematic investigation of the intrinsic properties of metastable TMDs.

6.
Angew Chem Int Ed Engl ; 61(28): e202204967, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35510692

RESUMO

Cu-based metal-organic frameworks have attracted much attention for electrocatalytic CO2 reduction, but they are generally instable and difficult to control the product selectivity. We report flexible Cu(I) triazolate frameworks as efficient, stable, and tunable electrocatalysts for CO2 reduction to C2 H4 /CH4 . By changing the size of ligand side groups, the C2 H4 /CH4 selectivity ratio can be gradually tuned and inversed from 11.8 : 1 to 1 : 2.6, giving C2 H4 , CH4 , and hydrocarbon selectivities up to 51 %, 56 %, and 77 %, respectively. After long-term electrocatalysis, they can retain the structures/morphologies without formation of Cu-based inorganic species. Computational simulations showed that the coordination geometry of Cu(I) changed from triangular to tetrahedral to bind the reaction intermediates, and two adjacent Cu(I) cooperated for C-C coupling to form C2 H4 . Importantly, the ligand side groups controlled the catalyst flexibility by the steric hindrance mechanism, and the C2 H4 pathway is more sensitive than the CH4 one.

7.
Soft Matter ; 17(40): 9125-9130, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34570151

RESUMO

Utilizing combined non-covalent interactions and introducing anions as structure-directing factors to build oriented self-assembly and 2D crystalline nanosheet superstructures with precise distance control of surface charges in competitive aqueous solvents still represents a formidable challenge for supramolecular chemists. Here we report a simple, efficient, and general strategy for multiple C-H/N-H⋯anion hydrogen bond enhanced π-π interaction directed 2D oriented self-assembly in water, which is based on the head-to-tail association of perylene monoimide dimers (PMIs) by directing N-H⋯anion interactions to position the anions to the C-H of π systems (PMIs). Interesting, this behavior only occurs for size-matched anions (Cl- to NO3-; <45 Å3), while larger anions could not form 2D crystalline nanosheet superstructures. The results show that crystalline nanosheet superstructures with precise distance control of surface charges can effectively capture DNA, possibly due to their high surface charge density and the distance match between the distance of surface charges and the distance between adjacent base pairs.


Assuntos
DNA , Ânions , Pareamento de Bases , Ligação de Hidrogênio
8.
Ecotoxicol Environ Saf ; 208: 111587, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396110

RESUMO

Metalaxyl and Metalaxyl-M are the fungicides that widely used in many countries. In this study, the environmental behaviors between metalaxyl and metalaxyl-M in Tubifex tubifex (T. tubifex) were quantitative analyzed by using a high performance liquid chromatography with photo-diode-array-detector (HPLC-DAD). Results demonstrated that there was no significant difference (p > 0.05) in the concentration of metalaxyl and metalaxyl-M in T. tubifex during the exposure process. However, the dissipation behaviors of metalaxyl and metalaxyl-M in T. tubifex were different (p < 0.05) during the non-exposure culture process. Meanwhile, the toxic effects were also evaluated by comparing the different influences of these two compounds on related physiological indicators, and functional enzyme activities. The survival rates of T. tubifex were 63.33 ± 15.28% (20 mg L-1), 63.33 ± 5.77% (200 mg L-1) treated with metalaxyl and were 50.00 ± 10.00% (20 mg L-1), 46.67 ± 11.55 (200 mg L-1) treated with metalaxyl-M at the non-exposure culture process. The autotomy rates were increased significantly compared with the initial in all treatments. Besides, the activities of CAT, SOD, and GST in T. tubifex were also inhibited by metalaxyl and metalaxyl-M treatments. Finally, the high-throughput transcriptome sequencing technology was applied to investigate the metabolic pathways of target analytes in T. tubifex, and results proved that the metabolic pathways associated with human diseases (such as viral myocarditis) were up-regulated expression for metalaxyl and metalaxyl-M treatments, and metalaxyl-M up-regulated more significantly. All the results demonstrated that metalaxyl-M had a higher toxicity than metalaxyl on T. tubifex.


Assuntos
Alanina/análogos & derivados , Fungicidas Industriais/toxicidade , Oligoquetos/fisiologia , Alanina/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Oligoquetos/efeitos dos fármacos
9.
Nat Mater ; 18(9): 994-998, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308517

RESUMO

Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal-organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption-desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.

10.
Inorg Chem ; 59(9): 6047-6052, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32314905

RESUMO

Solvothermal reactions of 3-(3-methylpyridin-4-yl)benzoic acid (Hmpba) with Mn(NO3)2 or Co(NO3)2 yielded isostructural porous coordination polymers, [Mn(mpba)2]·guest (MCF-56, 1·g) and [Co(mpba)2]·guest (MCF-57, 2·g), respectively. X-ray diffraction revealed that 1·g and 2·g possess similar one-dimensional ultramicroporous channels, and guest-free [Mn(mpba)2] (1') and [Co(mpba)2] (2') possess significantly and slightly contracted channels, respectively. Single-component C3H6/C3H8 adsorption isotherms and computational simulations showed the typical nonporous-to-porous structural transformations for 1', in which C3H6 exhibits a significantly lower threshold pressure, and the typical small-pore-to-large-pore structural transformations for 2', in which C3H6 exhibits a slightly lower threshold pressure. Mixture column breakthrough experiments showed that the C3H6/C3H8 separation performances of 2' are obviously better than those of 1', because the latter cannot adsorb C3H6 below the threshold pressure for pore opening, and the pore opened by C3H6 can adsorb C3H8.

11.
Angew Chem Int Ed Engl ; 59(51): 23322-23328, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32897617

RESUMO

Porous molecular crystals sustained by hydrogen bonds and/or weaker connections are an intriguing type of adsorbents, but they rarely demonstrate efficient adsorptive separation because of poor structural robustness and tailorability. Herein, we report a porous molecular crystal based on hydrogen-bonded cyclic dinuclear AgI complex, which exhibits exceptional hydrophobicity with a water contact angle of 134°, and high chemical stability in water at pH 2-13. The seemingly rigid adsorbent shows a pore-opening or nonporous-to-porous type butane adsorption isotherm and complete exclusion of isobutane, indicating potential molecular sieving. Quantitative column breakthrough experiments show slight co-adsorption of isobutane with an experimental butane/isobutane selectivity of 23, and isobutane can be purified more efficiently than for butane. In situ powder/single-crystal X-ray diffraction and computational simulations reveal that a trivial guest-induced structural transformation plays a critical role.

12.
J Am Chem Soc ; 141(14): 5645-5649, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30908017

RESUMO

The dynamic behaviors of a new type of three-dimensional (3D) water framework symbiotic with 1D stacking organic guests, including an order-disorder transition of hydrogen atoms, a supercooling phenomenon during phase transition, and a dipole-glass-like relaxation behavior due to locally trapped water molecules, are presented. This extremely scarce 3D water framework, together with the rich dynamic behaviors it exhibits, provides new clues to design new ice-like models for promoting the fundamental understanding of the dynamic behavior of water in diverse solid-states.

13.
Inorg Chem ; 58(6): 3944-3949, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30835444

RESUMO

Solvothermal reactions of 3-methyl-5-trifluoromethyl-1,2,4-triazole (Hfmtz) with Cu(CH3COO)2 at 120 °C in the presence of Cl- generate two partially fluorinated coordination polymers: i.e., [Cu4Cl(fmtz)3] (1 or MAF-51) and [Cu7Cl(fmtz)6] (2 or MAF-52). Single-crystal X-ray diffraction revealed 1 to have a three-dimensional (3D) nonporous structure with pcu topology consisting of 6-connected Cu4(µ4-Cl) clusters and 2 to possess a highly porous (void ratio 48%) 3D bnn network consisting of 5-connected Cu5(µ5-Cl) clusters. Benefiting from the hydrophobic pendant groups, complete coordination of the ligand N atoms, and strong M-N coordination bonds, 1 and 2 possess high water stability (exposed to water for at least 1 year) and hydrophobicity (water contact angles of 141° and 148°, respectively). The N2 sorption isotherm of activated 2 gave Langmuir/BET surface areas of 1023/848 m2 g-1 and a pore volume of 0.365 cm3 g-1. Moreover, 2 can adsorb large amounts of benzene and methanol but barely adsorb water. Both 1 and 2 show phosphorescence of Cu(I) complexes, but only that of porous 2 is sensitive to O2, showing a linear Stern-Volmer response below 1 mbar with an ultrahigh Ksv value of 5234 bar-1 and ultralow limit of detection of 1.9 ppm.

14.
Mikrochim Acta ; 186(3): 187, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771073

RESUMO

A magnetite@graphene oxide nanocomposite was first coated with polyethylenimine and then modified with phytic acid and titanium(IV) ions. The high loading with Ti(IV) and the good hydrophilicity of PEI and PA result in a material that can be applied to the efficient extraction of highly polar nucleobases, nucleosides and nucleotides. The physicochemical properties of the composite were investigated by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, water contact angle measurements, thermogravimetric analysis, and vibrating sample magnetometry. A series of parameters that affect extraction and elution under the conditions of immobilized metal affinity chromatography (IMAC) and hydrophilic interaction liquid chromatography (HILIC) were examined. The analytes were eluted from the nanocomposites using 10 mM trisodium phosphate as the elution solution in the IMAC mode, and 50% methanol-water as elution solution in the HILIC mode. Figures of merit include (a) an intra-day precision of 0.1-1.0% in the IMAC mode; (b) an intra-day precision of 0.4%-0.8% in the HILIC mode; (c) detection limits between 1.8-2.8 ng mL-1 in the IMAC mode; and (d) detection limits of 4.0-10.5 ng mL-1 in the HILIC mode. The method was applied to the extraction of the nucleotides cytidine-5'-monophosphate (CMP), uridine-5'-monophosphate (UMP), guanosine-5'-monophosphate (GMP), and adenosine-5'-monophosphate (AMP), and the nucleobases and nucleosides hypoxanthine, adenosine, cytosine, inosine and cytidine from Cordyceps sinensis, Lentinus edodes and plasma samples. Graphical abstract Schematic presentation of the workflow for the extraction of nucleobases, nucleosides and nucleotides using phytic acid-Ti(IV) functionalized magnetite@graphene oxide nanocomposites under two distinct modes.


Assuntos
Nanocompostos/química , Nucleosídeos/sangue , Nucleotídeos/sangue , Ácido Fítico/química , Titânio/química , Adsorção , Animais , Cordyceps/química , Óxido Ferroso-Férrico/química , Grafite/química , Limite de Detecção , Fenômenos Magnéticos , Óxidos/química , Polietilenoimina/química , Coelhos , Cogumelos Shiitake/química , Extração em Fase Sólida/métodos
15.
Angew Chem Int Ed Engl ; 58(23): 7692-7696, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30913363

RESUMO

Efficient adsorptive separation of propylene/propane (C3 H6 /C3 H8 ) is highly desired and challenging. Known strategies focus on either the thermodynamic or the kinetic mechanism. Here, we report an interesting reactivity of a metal-organic framework that improves thermodynamic and kinetic adsorption selectivity simultaneously. When the metal-organic framework is heated under oxygen flow, half of the soft methylene bridges of the organic ligands are selectively oxidized to form the more polar and rigid carbonyl bridges. Mixture breakthrough experiments showed drastic increase of C3 H6 /C3 H8 selectivity from 1.5 to 15. For comparison, the C3 H6 /C3 H8 selectivities of the best-performing metal-organic frameworks Co-MOF-74 and KAUST-7 were experimentally determined to be 6.5 and 12, respectively. Gas adsorption isotherms/kinetics, single-crystal X-ray diffraction, and computational simulations revealed that the oxidation gives additional guest recognition sites, which improve thermodynamic selectivity, and reduces the framework flexibility, which generate kinetic selectivity.

16.
Angew Chem Int Ed Engl ; 58(1): 139-143, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30320948

RESUMO

Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4 (MO4 )(eim)6 ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim)3 (MO4 ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm-2 at an overpotential of 210 mV in CO2 -saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm-2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO2 . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value.

17.
Angew Chem Int Ed Engl ; 57(17): 4632-4636, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29457327

RESUMO

Two-dimensional (2D) materials and ultrathin nanosheets are advantageous for elevating the catalysis performance and elucidating the catalysis mechanism of heterogeneous catalysts, but they are mostly restricted to inorganic or organic materials based on covalent bonds. We report an electrochemical/chemical exfoliation strategy for synthesizing metal-organic 2D materials based on coordination bonds. A catechol functionalized ligand is used as the redox active pillar to construct a pillared-layer framework. When the 3D pillared-layer MOF serves as an electrocatalyst for water oxidation (pH 13), the pillar ligands can be oxidized in situ and removed. The remaining ultrathin (2 nm) nanosheets of the metal-organic layers are an efficient catalyst with overpotentials as low as 211 mV at 10 mA cm-2 and a turnover frequency as high as 30 s-1 at an overpotential of 300 mV.

18.
J Am Chem Soc ; 139(5): 1778-1781, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28112923

RESUMO

The paddle-wheel type cluster Co2(RCOO)4(LT)2 (R = substituent group, LT = terminal ligand), possessing unusual metal coordination geometry compared with other cobalt compounds, may display high catalytic activity but is highly unstable especially in water. Here, we show that with judicious considerations of the host/guest geometries and modular synthetic strategies, the labile dicobalt clusters can be immobilized and stabilized in a metal-organic framework (MOF) as coordinative guests. The Fe(na)4(LT) fragment in the MOF [{Fe3(µ3-O)(bdc)3}4{Fe(na)4(LT)}3] (H2bdc = 1,4-benzenedicaboxylic acid, Hna = nicotinic acid) can be removed to give [{Fe3(µ3-O)(bdc)3}4] with a unique framework connectivity possessing suitable distribution of open metal sites for binding the dicobalt cluster in the form of Co2(na)4(LT)2. After two-step, single-crystal to single-crystal, postsynthetic modifications, a thermal-, water-, and alkaline-stable MOF [{Fe3(µ3-O)(bdc)3}4{Co2(na)4(LT)2}3] containing the desired dicobalt cluster was obtained, giving extraordinarily high electrocatalytic oxygen evolution activity in water at pH = 13 with overpotential as low as 225 mV at 10.0 mA cm-2.

19.
Inorg Chem ; 55(21): 11418-11425, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27767313

RESUMO

Plastic crystals functioning with rotatable components offer new opportunities in areas such as modern optoelectronic materials. Here, by taking advantage of controllable rotation of the polar component within the ion-pair plastic-crystal system, we present two such crystals, namely, (Et4N)(CrO3X) (X = Cl or Br), which are unusual examples exhibiting two-staged thermosensitive dielectric responses above room temperature. The frequency-dependent response in the first stage is due to the structural phase transitions, whereas that in the second stage is induced by dynamic rotation of the polar halochromate anions in their NaCl-type plastic-crystal phases. The intrinsic mechanisms were also explicated by molecular dynamics simulations, providing a direct insight into the dynamic characteristics of these two compounds. These studies show that ionic plastic crystals functioning with polar groups are an attractive candidate as sensitive thermoresponsive dielectric materials.

20.
Angew Chem Int Ed Engl ; 55(15): 4674-8, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26948156

RESUMO

Much effort has been devoted to develop new porous structures for methane storage. We report a new porous coordination framework showing exceptional methane uptakes (e.g. 263 v/v at 298 K and 65 bar) and adsorption enthalpies (21.6 kJ mol(-1)) as high as current record holders functionalized by open metal sites. Computational simulations demonstrated that the hierarchical pore structure consisting of single-wall nanocages has suitable sizes/shapes and organic binding sites to enforce not only strong host-methane and methane-methane interactions but also dense packing of methane molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA