Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Plant J ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865085

RESUMO

Heat stress is an environmental factor that significantly threatens crop production worldwide. Nevertheless, the molecular mechanisms governing plant responses to heat stress are not fully understood. Plant zinc finger CCCH proteins have roles in stress responses as well as growth and development through protein-RNA, protein-DNA, and protein-protein interactions. Here, we reveal an integrated multi-level regulation of plant thermotolerance that is mediated by the CCCH protein C3H15 in Arabidopsis. Heat stress rapidly suppressed C3H15 transcription, which attenuated C3H15-inhibited expression of its target gene HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), a central regulator of heat stress response (HSR), thereby activating HEAT SHOCK COGNATE 70 (HSC70.3) expression. The RING-type E3 ligase MED25-BINDING RING-H2 PROTEIN 2 (MBR2) was identified as an interacting partner of C3H15. The mbr2 mutant was susceptible to heat stress compared to wild-type plants, whereas plants overexpressing MBR2 showed increased heat tolerance. MBR2-dependent ubiquitination mediated the degradation of phosphorylated C3H15 protein in the cytoplasm, which was enhanced by heat stress. Consistently, heat sensitivities of C3H15 overexpression lines increased in MBR2 loss-of-function and decreased in MBR2 overexpression backgrounds. Heat stress-induced accumulation of HSC70.3 promoted MBR2-mediated degradation of C3H15 protein, implying that an auto-regulatory loop involving C3H15, HSFA2, and HSC70.3 regulates HSR. Heat stress also led to the accumulation of C3H15 in stress granules (SGs), a kind of cytoplasmic RNA granule. This study advances our understanding of the mechanisms plants use to respond to heat stress, which will facilitate technologies to improve thermotolerance in crops.

2.
Plant Cell ; 34(4): 1396-1414, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35038740

RESUMO

The mucilage surrounding hydrated Arabidopsis thaliana seeds is a specialized extracellular matrix composed mainly of the pectic polysaccharide rhamnogalacturonan I (RG-I). Although, several genes responsible for RG-I biosynthesis have been identified, the transcriptional regulatory mechanisms controlling RG-I production remain largely unknown. Here we report that the trihelix transcription factor DE1 BINDING FACTOR 1 (DF1) is a key regulator of mucilage RG-I biosynthesis. RG-I biosynthesis is significantly reduced in loss-of-function mutants of DF1. DF1 physically interacts with GLABRA2 (GL2) and both proteins transcriptionally regulate the expression of the RG-I biosynthesis genes MUCILAGE MODIFIED 4 (MUM4) and GALACTURONOSYLTRANSFERASE-LIKE5 (GATL5). Through chromatin immunoprecipitation-quantitative PCR and transcriptional activation assays, we uncover a cooperative mechanism of the DF1-GL2 module in activating MUM4 and GATL5 expression, in which DF1 binds to the promoters of MUM4 and GATL5 through interacting with GL2 and facilitates the transcriptional activity of GL2. The expression of DF1 and GL2 is directly regulated by TRANSPARENT TESTA GLABRA2 (TTG2) and, in turn, DF1 directly represses the expression of TTG2. Taken together, our data reveal that the transcriptional regulation of mucilage RG-I biosynthesis involves a regulatory module, comprising DF1, GL2, and TTG2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas , Mucilagem Vegetal/metabolismo , Polissacarídeos/metabolismo , Sementes/genética , Sementes/metabolismo
3.
Plant Cell ; 34(9): 3364-3382, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35703939

RESUMO

Activity of the vascular cambium gives rise to secondary xylem for wood formation in trees. The transcription factor WUSCHEL-related HOMEOBOX4 (WOX4) is a central regulator downstream of the hormone and peptide signaling pathways that maintain cambial activity. However, the genetic regulatory network underlying WOX4-mediated wood formation at the post-transcriptional level remains to be elucidated. In this study, we identified the ubiquitin receptor PagDA1 in hybrid poplar (Populus alba × Populus glandulosa clone 84K) as a negative regulator of wood formation, which restricts cambial activity during secondary growth. Overexpression of PagDA1 in poplar resulted in a relatively reduced xylem due to decreased cambial cell division. By contrast, mutation of PagDA1 by CRISPR/Cas9 resulted in an increased cambial cell activity and promoted xylem formation. Genetic analysis demonstrated that PagDA1 functions antagonistically in a common pathway as PagWOX4 to regulate cambial activity. We propose that PagDA1 physically associates with PagWOX4 and modulates the degradation of PagWOX4 by the 26S proteasome. Moreover, genetic analysis revealed that PagDA1 exerts its negative effect on cambial development by modulating the stability of PagWOX4 in a ubiquitin-dependent manner mediated by the E3 ubiquitin ligase PagDA2. In sum, we have identified a cambial regulatory protein complex, PagDA1-PagWOX4, as a potential target for wood biomass improvement.


Assuntos
Câmbio , Populus , Redes Reguladoras de Genes , Fatores de Transcrição , Ubiquitinas , Madeira , Xilema
4.
New Phytol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877710

RESUMO

Tree peony (Paeonia suffruticosa) undergoes bud endodormancy, and gibberellin (GA) pathway plays a crucial role in dormancy regulation. Recently, a key DELLA protein PsRGL1 has been identified as a negative regulator of bud dormancy release. However, the mechanism of GA signal to break bud dormancy remains unknown. In this study, yeast two-hybrid screened PsSOC1 interacting with PsRGL1 through its MADS domain, and interaction was identified using pull-down and luciferase complementation imaging assays Transformation in tree peony and hybrid poplar confirmed that PsSOC1 facilitated bud dormancy release. Transcriptome analysis of PsSOC1-overexpressed buds indicated PsCYCD3.3 and PsEBB3 were its potential downstream targets combining with promoter survey, and they also accelerated bud dormancy release verified by genetic analysis. Yeast one-hybrid, electrophoretic mobility shifts assays, chromatin immunoprecipitation quantitative PCR, and dual luciferase assays confirmed that PsSOC1 could directly bind to the CArG motif of PsCYCD3.3 and PsEBB3 promoters via its MADS domain. PsRGL1-PsSOC1 interaction inhibited the DNA-binding activity of PsSOC1. Additionally, PsCYCD3.3 promoted bud dormancy release by rebooting cell proliferation. These findings elucidated a novel GA pathway, GA-PsRGL1-PsSOC1-PsCYCDs, which expanded our understanding of the GA pathway in bud dormancy release.

5.
Plant Cell ; 33(2): 381-403, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33709105

RESUMO

Homogalacturonan (HG), a component of pectin, is synthesized in the Golgi apparatus in its fully methylesterified form. It is then secreted into the apoplast where it is typically de-methylesterified by pectin methylesterases (PME). Secretion and de-esterification are critical for normal pectin function, yet the underlying transcriptional regulation mechanisms remain largely unknown. Here, we uncovered a mechanism that fine-tunes the degree of HG de-methylesterification (DM) in the mucilage that surrounds Arabidopsis thaliana seeds. We demonstrate that the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor (TF) ERF4 is a transcriptional repressor that positively regulates HG DM. ERF4 expression is confined to epidermal cells in the early stages of seed coat development. The adhesiveness of the erf4 mutant mucilage was decreased as a result of an increased DM caused by a decrease in PME activity. Molecular and genetic analyses revealed that ERF4 positively regulates HG DM by suppressing the expression of three PME INHIBITOR genes (PMEIs) and SUBTILISIN-LIKE SERINE PROTEASE 1.7 (SBT1.7). ERF4 shares common targets with the TF MYB52, which also regulates pectin DM. Nevertheless, the erf4-2 myb52 double mutant seeds have a wild-type mucilage phenotype. We provide evidence that ERF4 and MYB52 regulate downstream gene expression in an opposite manner by antagonizing each other's DNA-binding ability through a physical interaction. Together, our findings reveal that pectin DM in the seed coat is fine-tuned by an ERF4-MYB52 transcriptional complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Proteínas Repressoras/metabolismo , Sementes/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Adesividade , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Reagentes de Ligações Cruzadas/química , Esterificação , Genes de Plantas , Mutação/genética , Motivos de Nucleotídeos/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Ligação Proteica , Proteínas Repressoras/genética
6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612657

RESUMO

Huntington's disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Terapia Genética , Proteínas Mutantes
7.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542226

RESUMO

The homeodomain-leucine zipper (HD-ZIP) transcription factors, representing one of the largest plant-specific superfamilies, play important roles in the response to various abiotic stresses. However, the functional roles of HD-ZIPs in abiotic stress tolerance and the underlying mechanisms remain relatively limited in Miscanthus sinensis. In this study, we isolated an HD-ZIP TF gene, MsHDZ23, from Miscanthus and ectopically expressed it in Arabidopsis. Transcriptome and promoter analyses revealed that MsHDZ23 responded to salt, alkali, and drought treatments. The overexpression (OE) of MsHDZ23 in Arabidopsis conferred higher tolerance to salt and alkali stresses compared to wild-type (WT) plants. Moreover, MsHDZ23 was able to restore the hb7 mutant, the ortholog of MsHDZ23 in Arabidopsis, to the WT phenotype. Furthermore, MsHDZ23-OE lines exhibited significantly enhanced drought stress tolerance, as evidenced by higher survival rates and lower water loss rates compared to WT. The improved drought tolerance may be attributed to the significantly smaller stomatal aperture in MsHDZ23-OE lines compared to WT. Furthermore, the accumulation of the malondialdehyde (MDA) under abiotic stresses was significantly decreased, accompanied by dramatically enhanced activities in several antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in the transgenic plants. Collectively, these results demonstrate that MsHDZ23 functions as a multifunctional transcription factor in enhancing plant resistance to abiotic stresses.


Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Poaceae/genética , Poaceae/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Álcalis , Secas
8.
Neurobiol Dis ; 187: 106291, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716514

RESUMO

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disease caused by a CAG repeat expansion in exon1 of the huntingtin gene (HTT). This expansion leads to the production of N-terminal mutant huntingtin protein (mHtt) that contains an expanded polyglutamine tract, which is toxic to neurons and causes neurodegeneration. While the production of N-terminal mHtt can be mediated by proteolytic cleavage of full-length mHtt, abnormal splicing of exon1-intron1 of mHtt has also been identified in the brains of HD mice and patients. However, the proportion of aberrantly spliced exon1 mHTT in relation to normal mHTT exon remains to be defined. In this study, HTT exon1 production was examined in the HD knock-in (KI) pig model, which more closely recapitulates neuropathology seen in HD patient brains than HD mouse models. The study revealed that aberrant spliced HTT exon1 is also present in the brains of HD pigs, but it is expressed at a much lower level than the normally spliced HTT exon products. These findings suggest that careful consideration is needed when assessing the contribution of aberrantly spliced mHTT exon1 to HD pathogenesis, and further rigorous investigation is required.

9.
Plant Physiol ; 190(3): 1941-1959, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736512

RESUMO

Perception of pathogen-associated molecular patterns (PAMPs) triggers mitogen-activated protein (MAP) kinase 4 (MPK4)-mediated phosphorylation and induces downstream transcriptional reprogramming, but the mechanisms of the MPK4 defense pathway are poorly understood. Here, we showed that phosphorylation-mediated inactivation of the CCCH protein C3H14 by MPK4 positively regulates the immune response in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, loss-of-function mutations in C3H14 and its paralog C3H15 resulted in enhanced defense against Pst DC3000 in infected leaves and the development of systemic acquired resistance (SAR), whereas C3H14 or C3H15 overexpression enhanced susceptibility to this pathogen and failed to induce SAR. The functions of C3H14 in PAMP-triggered immunity (PTI) and SAR were dependent on MPK4-mediated phosphorylation. Challenge with Pst DC3000 or the flagellin peptide flg22 enhanced the phosphorylation of C3H14 by MPK4 in the cytoplasm, relieving C3H14-inhibited expression of PTI-related genes and attenuating C3H14-activated expression of its targets NIM1-INTERACTING1 (NIMIN1) and NIMIN2, two negative regulators of SAR. Salicylic acid (SA) affected the MPK4-C3H14-NIMIN1/2 cascades in immunity, but SA signaling mediated by the C3H14-NIMIN1/2 cascades was independent of MPK4 phosphorylation. Our study suggests that C3H14 might be a negative component of the MPK4 defense signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Fosforilação , Imunidade Vegetal/genética , Pseudomonas syringae/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ácido Salicílico/metabolismo
10.
Plant Physiol ; 189(1): 285-300, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139225

RESUMO

Plant CCCH proteins participate in the control of multiple developmental and adaptive processes, but the regulatory mechanisms underlying these processes are not well known. In this study, we showed that the Arabidopsis (Arabidopsis thaliana) CCCH protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid (BR) signaling. Genetic and biochemical evidence showed that C3H15 functions downstream of the receptor BR INSENSITIVE 1 (BRI1) as a negative regulator in the BR pathway. C3H15 is phosphorylated by the GLYCOGEN SYNTHASE KINASE 3 -like kinase BR-INSENSITIVE 2 (BIN2) at Ser111 in the cytoplasm in the absence of BRs. Upon BR perception, C3H15 transcription is enhanced, and the phosphorylation of C3H15 by BIN2 is reduced. The dephosphorylated C3H15 protein accumulates in the nucleus, where C3H15 regulates transcription via G-rich elements (typically GGGAGA). C3H15 and BRASSINAZOLE RESISTANT 1 (BZR1)/BRI1-EMS-SUPPRESSOR 1 (BES1), two central transcriptional regulators of BR signaling, directly suppress each other and share a number of BR-responsive target genes. Moreover, C3H15 antagonizes BZR1 and BES1 to regulate the expression of their shared cell elongation-associated target gene, SMALL AUXIN-UP RNA 15 (SAUR15). This study demonstrates that C3H15-mediated BR signaling may be parallel to, or even attenuate, the dominant BZR1 and BES1 signaling pathways to control cell elongation. This finding expands our understanding of the regulatory mechanisms underlying BR-induced cell elongation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Dedos de Zinco
11.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685866

RESUMO

Huntington's disease (HD) is caused by an expansion of a CAG repeat in the gene that encodes the huntingtin protein (HTT). The exact function of HTT is still not fully understood, and previous studies have mainly focused on identifying proteins that interact with HTT to gain insights into its function. Numerous HTT-interacting proteins have been discovered, shedding light on the functions and structure of HTT. Most of these proteins interact with the N-terminal region of HTT. Among the various HTT-interacting proteins, huntingtin-associated protein 1 (HAP1) and HTT-interacting protein 1 (HIP1) have been extensively studied. Recent research has uncovered differences in the distribution of HAP1 in monkey and human brains compared with mice. This finding suggests that there may be species-specific variations in the regulation and function of HTT-interacting proteins. Understanding these differences could provide crucial insights into the development of HD. In this review, we will focus on the recent advancements in the study of HTT-interacting proteins, with particular attention to the differential distributions of HTT and HAP1 in larger animal models.


Assuntos
Encéfalo , Doença de Huntington , Humanos , Animais , Camundongos , Proteína Huntingtina/genética , Doença de Huntington/genética , Modelos Animais , Especificidade da Espécie
12.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769258

RESUMO

Large-scale use of fossil fuels has brought about increasingly serious problems of environmental pollution, development and utilization of renewable energy is one of the effective solutions. Duckweed has the advantages of fast growth, high starch content and no occupation of arable land, so it is a promising starchy energy plant. A new submerged duckweed mutant (sub-1) with abundant starch accumulation was obtained, whose content of amylopectin accounts for 84.04% of the starch granules. Compared with the wild type (Lemna aequinoctialis), the branching degree of starch in sub-1 mutant was significantly increased by 19.6%. Chain length DP 6-12, DP 25-36 and DP > 36 of amylopectin significantly decreased, while chain length DP 13-24 significantly increased. Average chain length of wild-type and sub-1 mutant starches were greater than DP 22. Moreover, the crystal structure and physical properties of starch have changed markedly in sub-1 mutant. For example, the starch crystallinity of sub-1 mutant was only 8.94%, while that of wild-type was 22.3%. Compared with wild type, water solubility of starch was significantly reduced by 29.42%, whereas swelling power significantly increased by 97.07% in sub-1 mutant. In order to further analyze the molecular mechanism of efficient accumulation of amylopectin in sub-1 mutant, metabolome and transcriptome were performed. The results showed that glucose accumulated in sub-1 mutant, then degradation of starch to glucose mainly depends on α-amylase. At night, the down-regulated ß-amylase gene resulted in the inhibition of starch degradation. The starch and sucrose metabolism pathways were significantly enriched. Up-regulated expression of SUS, AGPase2, AGPase3, PYG, GPI and GYS provide sufficient substrate for starch synthesis in sub-1 mutant. From the 0H to 16H light treatment, granule-bound starch synthase (GBSS1) gene was inhibited, on the contrary, the starch branching enzyme (SBE) gene was induced. Differential expression of GBSS1 and SBE may be an important reason for the decrease ratio of amylose/amylopectin in sub-1 mutant. Taken together, our results indicated that the sub-1 mutant can accumulate the amylopectin efficiently, potentially through altering the differential expression of AGPase, GBSS1, SBE, and BAM. This study also provides theoretical guidance for creating crop germplasm with high amylopectin by means of synthetic biology in the future.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Araceae , Sintase do Amido , Amilopectina/química , Amido/metabolismo , Amilose/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Araceae/metabolismo
13.
J Integr Plant Biol ; 65(8): 1852-1858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37203882

RESUMO

Brassinosteroids (BRs) are plant hormones that regulate wood formation in trees. Currently, little is known about the post-transcriptional regulation of BR synthesis. Here, we show that during wood formation, fine-tuning BR synthesis requires 3'UTR-dependent decay of Populus CONSTITUTIVE PHOTOMORPHOGENIC DWARF 1 (PdCPD1). Overexpression of PdCPD1 or its 3' UTR fragment resulted in a significant increase of BR levels and inhibited secondary growth. In contrast, transgenic poplars repressing PdCPD1 3' UTR expression displayed moderate levels of BR and promoted wood formation. We show that the Populus GLYCINE-RICH RNA-BINDING PROTEIN 1 (PdGRP1) directly binds to a GU-rich element in 3' UTR of PdCPD1, leading to its mRNA decay. We thus provide a post-transcriptional mechanism underlying BRs synthesis during wood formation, which may be useful for genetic manipulation of wood biomass in trees.


Assuntos
Populus , Madeira , Madeira/genética , Brassinosteroides/metabolismo , Regiões 3' não Traduzidas/genética , Populus/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas/genética
14.
J Integr Plant Biol ; 65(5): 1134-1146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36647609

RESUMO

Lignin is a major component of plant cell walls and is essential for plant growth and development. Lignin biosynthesis is controlled by a hierarchical regulatory network involving multiple transcription factors. In this study, we showed that the gene encoding an APETALA 2/ethylene-responsive element binding factor (AP2/ERF) transcription factor, PagERF81, from poplar 84 K (Populus alba × P. glandulosa) is highly expressed in expanding secondary xylem cells. Two independent homozygous Pagerf81 mutant lines created by gene editing, produced significantly more but smaller vessel cells and longer fiber cells with more lignin in cell walls, while PagERF81 overexpression lines had less lignin, compared to non-transgenic controls. Transcriptome and reverse transcription quantitative PCR data revealed that multiple lignin biosynthesis genes including Cinnamoyl CoA reductase 1 (PagCCR1), Cinnamyl alcohol dehydrogenase 6 (PagCAD6), and 4-Coumarate-CoA ligase-like 9 (Pag4CLL9) were up-regulated in Pagerf81 mutants, but down-regulated in PagERF81 overexpression lines. In addition, a transient transactivation assay revealed that PagERF81 repressed the transcription of these three genes. Furthermore, yeast one hybrid and electrophoretic mobility shift assays showed that PagERF81 directly bound to a GCC sequence in the PagCCR1 promoter. No known vessel or fiber cell differentiation related genes were differentially expressed, so the smaller vessel cells and longer fiber cells observed in the Pagerf81 lines might be caused by abnormal lignin deposition in the secondary cell walls. This study provides insight into the regulation of lignin biosynthesis, and a molecular tool to engineer wood with high lignin content, which would contribute to the lignin-related chemical industry and carbon sequestration.


Assuntos
Lignina , Populus , Lignina/metabolismo , Populus/metabolismo , Xilema/metabolismo , Madeira/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
15.
Plant Physiol ; 185(1): 77-93, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631797

RESUMO

Numerous proteins involved in cellulose biosynthesis and assembly have been functionally characterized. Nevertheless, we have a limited understanding of the mechanisms underlying the transcriptional regulation of the genes that encode these proteins. Here, we report that HOMEODOMAIN GLABROUS2 (HDG2), a Homeobox-Leucine Zipper IV transcription factor, regulates cellulose biosynthesis in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. HDG2 is a transcriptional activator with the transactivation domain located within its Leucine-Zipper domain. Transcripts of HDG2 were detected specifically in seed coat epidermal cells with peak expression at 10 d postanthesis. Disruptions of HDG2 led to seed coat mucilage with aberrant morphology due to a reduction in its crystalline cellulose content. Electrophoretic mobility shift and yeast one-hybrid assays, together with chromatin immunoprecipitation and quantitative PCR, provided evidence that HDG2 directly activates CELLULOSE SYNTHASE5 (CESA5) expression by binding to the L1-box cis-acting element in its promoter. Overexpression of CESA5 partially rescued the mucilage defects of hdg2-3. Together, our data suggest that HDG2 directly activates CESA5 expression and thus is a positive regulator of cellulose biosynthesis in seed coat mucilage.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Celulose/biossíntese , Celulose/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mucilagem Vegetal/genética , Mucilagem Vegetal/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
16.
J Exp Bot ; 73(11): 3477-3495, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188965

RESUMO

The production of Arabidopsis seed mucilage involves complex polysaccharide biosynthetic pathways and developmental processes in seed epidermal cells. Although the polysaccharide components of Arabidopsis seed mucilage have been identified, their regulatory mechanism requires further investigation. Here, we show that Class II KNOX gene family members KNAT3 and KNAT7 play an essential role in regulating mucilage production in the early developmental stages of Arabidopsis seeds. Double mutant knat3knat7 resulted in defective seed mucilage production and columellae formation, whereas knat3 showed a normal phenotype compared with wild type, and the mucilage thickness in knat7 was slightly disturbed. Rhamnogalacturonan I (RG-I) and its biosynthetic substrates galacturonic acid and rhamnose were reduced in both the adherent and soluble mucilage of knat3knat7. Comparative transcriptome analysis on whole seeds suggested that polysaccharide, glucosinolate and anthocyanin biosynthetic pathways were specifically repressed in knat3knat7. Transient co-expression of KNAT3 and KNAT7 with promoter regions of candidate genes in Arabidopsis protoplasts revealed that both KNAT3 and KNAT7 act as positive regulators of the RG-I biosynthetic gene MUCILAGE-MODIFIED 4 (MUM4, AT1G53500). Collectively, our results demonstrate that KNAT3 and KNAT7 are multifunctional transcription factors in secondary cell wall development and redundantly modulate mucilage biosynthesis in Arabidopsis seeds.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mucilagem Vegetal/metabolismo , Polissacarídeos/metabolismo , Proteínas Repressoras/metabolismo , Sementes/genética , Sementes/metabolismo
17.
Ann Bot ; 129(4): 403-413, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34922335

RESUMO

BACKGROUND AND AIMS: The precise control of brassinosteroid (BR) homeostasis and signalling is a prerequisite for hypocotyl cell elongation in plants. Arabidopsis MYB42 and its paralogue MYB85 were previously identified to be positive regulators of secondary cell wall formation during mature stages. Here, we aim to reveal the role of MYB42 and MYB85 in hypocotyl elongation during the seedling stage and clarify how MYB42 coordinates BR homeostasis and signalling to regulate this process. METHODS: Histochemical analysis of proMYB42-GUS transgenic plants was used for determination of the MYB42 expression pattern. The MYB42, 85 overexpression, double mutant and some crossing lines were generated for phenotypic observation and transcriptome analysis. Transcription activation assays, quantitative PCR (qPCR), chromatin immunoprecipitation (ChIP)-qPCR and electrophoretic mobility shift assays (EMSAs) were conducted to determine the relationship of MYB42 and BRASSINAZOLE-RESISTANT 1 (BZR1), a master switch activating BR signalling. KEY RESULTS: MYB42 and MYB85 redundantly and negatively regulate hypocotyl cell elongation. They function in hypocotyl elongation by mediating BR signalling. MYB42 transcription was suppressed by BR treatment or in bzr1-1D (a gain-of-function mutant of BZR1), and mutation of both MYB42 and MYB85 enhanced the dwarf phenotype of the BR receptor mutant bri1-5. BZR1 directly repressed MYB42 expression in response to BR. Consistently, hypocotyl length of bzr1-1D was increased by simultaneous mutation of MYB42 and MYB85, but was reduced by overexpression of MYB42. Expression of a number of BR-regulated BZR1 (non-)targets associated with hypocotyl elongation was suppressed by MYB42, 85. Furthermore, MYB42 enlarged its action in BR signalling through feedback repression of BR accumulation and activation of DOGT1/UGT73C5, a BR-inactivating enzyme. CONCLUSIONS: MYB42 inhibits hypocotyl elongation by coordinating BR homeostasis and signalling during primary growth. The present study shows an MYB42, 85-mediated multilevel system that contributes to fine regulation of BR-induced hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Hipocótilo
18.
Plant Cell Rep ; 41(11): 2111-2123, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35986766

RESUMO

Pectin is an important component of cell wall polysaccharides and is important for normal plant growth and development. As a major component of pectin in the primary cell wall, homogalacturonan (HG) is a long-chain macromolecular polysaccharide composed of repeated α-1,4-D-GalA sugar units. At the same time, HG is synthesized in the Golgi apparatus in the form of methyl esterification and acetylation. It is then secreted into the plasmodesmata, where it is usually demethylated by pectin methyl esterase (PME) and deacetylated by pectin acetylase (PAE). The synthesis and modification of HG are involved in polysaccharide metabolism in the cell wall, which affects the structure and function of the cell wall and plays an important role in plant growth and development. This paper mainly summarizes the recent research on the biosynthesis, modification and the roles of HG in plant cell wall.


Assuntos
Parede Celular , Pectinas , Parede Celular/metabolismo , Esterificação , Desenvolvimento Vegetal , Polissacarídeos/metabolismo
19.
Plant Physiol ; 183(1): 96-111, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32111623

RESUMO

The polysaccharide pectin is a major component of the plant cell wall. The pectic glycan homogalacturonan (HG) is a proportionally small but important component of a specialized seed cell wall called mucilage. HG is synthesized in a highly methylesterified form, and, following secretion, is de-methylesterified by pectin methylesterases (PMEs). The degree of methylesterification of HG determines the structural and functional properties of pectin, but how methylesterification is regulated remains largely unknown. Here, we identified two BEL1-Like homeodomain (BLH) transcription factors, BLH2 and BLH4, as positive regulators of HG de-methylesterification in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. BLH2 and BLH4 were significantly expressed in mucilage secretory cells during seed mucilage production. BLH2 and BLH4 single mutants exhibited no obvious mucilage phenotype, but the blh2 blh4 double mutant displayed significantly reduced mucilage adherence to the seed. Reduced mucilage adherence in blh2 blh4 was caused by decreased PME activity in the seed coat, which increased the degree of methylesterification of HG in mucilage. The expression of several PME metabolism-related genes, including PME58, PECTIN METHYLESTERASE INHIBITOR6, SEEDSTICK, and MYB52 was significantly altered in blh2 blh4 seeds. BLH2 and BLH4 directly activated PME58 expression by binding to its TGACAGGT cis-element. Moreover, pme58 mutants exhibited reduced mucilage adherence similar to that of blh2 blh4, and the blh2 blh4 pme58 triple mutant exhibited no additional mucilage adherence defects. Furthermore, overexpression of PME58 in blh2 blh4 rescued the mucilage adherence defect. Together, these results demonstrate that BLH2 and BLH4 redundantly regulate de-methylesterification of HG in seed mucilage by directly activating PME58.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/metabolismo , Pectinas/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Ligação Proteica , Sementes/genética , Fatores de Transcrição
20.
J Exp Bot ; 72(8): 3074-3090, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571997

RESUMO

Transitory starch is the portion of starch that is synthesized during the day in the chloroplast and usually used for plant growth overnight. Here, we report altered metabolism of transitory starch in the wxr1/wxr3 (weak auxin response 1/3) mutants of Arabidopsis. WXR1/WXR3 were previously reported to regulate root growth of young seedlings and affect the auxin response mediated by auxin polar transport in Arabidopsis. In this study the wxr1/wxr3 mutants accumulated transitory starch in cotyledon, young leaf, and hypocotyl at the end of night. WXR1/WXR3 expression showed diurnal variation. Grafting experiments indicated that the WXRs in root were necessary for proper starch metabolism and plant growth. We also found that photosynthesis was inhibited and the transcription level of DIN1/DIN6 (Dark-Inducible 1/6) was reduced in wxr1/wxr3. The mutants also showed a defect in the ionic equilibrium of Na+ and K+, consistent with our bioinformatics data that genes related to ionic equilibrium were misregulated in wxr1. Loss of function of WXR1 also resulted in abnormal trafficking of membrane lipids and proteins. This study reveals that the plastid proteins WXR1/WXR3 play important roles in promoting transitory starch degradation for plant growth over night, possibly through regulating ionic equilibrium in the root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Cloroplastos , Fotoperíodo , Amido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Mutação , Raízes de Plantas/genética , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA