RESUMO
Airway remodeling is a major feature of asthma. Interleukin (IL)-36γ is significantly upregulated and promotes airway hyper-responsiveness (AHR) in asthma, but its role in airway remodeling is unknown. Here, we aimed to investigate the role of IL-36γ in airway remodeling, and whether IL-38 can alleviate airway remodeling in chronic asthma by blocking the effects of IL-36γ. IL-36γ was quantified in mice inhaled with house dust mite (HDM). Extracellular matrix (ECM) deposition in lung tissues and AHR were assessed following IL-36γ administration to mice. Airway inflammation, AHR, and remodeling were evaluated after IL-38 or blocking IL-36 receptor (IL-36R) treatment in asthmatic mice. The effects of lung fibroblasts stimulated with IL-36γ and IL-38 were quantified in vitro. Increased expression of IL-36γ was detected in lung tissues of HDM-induced asthmatic mice. The intratracheal instillation of IL-36γ to mice significantly enhanced the ECM deposition, AHR, and the number of activated lung fibroblasts around the airways. IL-38 or blocking IL-36R treated asthmatic mice showed a significant alleviation in the airway inflammation, AHR, airway remodeling, and number of activated fibroblasts around airways as compared with the HDM group. In vitro, IL-36γ promoted the activation and migration of human lung fibroblasts (HFL-1). The administration of IL-38 can counteract these biological processes induced by IL-36γ in HFL-1cells. The results indicated that IL-38 can mitigate airway remodeling by blocking the profibrotic effects of IL-36γ in chronic asthma. IL-36γ may be a new therapeutic target, and IL-38 is a potential candidate agent for inhibiting airway remodeling in asthma.
Assuntos
Remodelação das Vias Aéreas , Asma , Animais , Humanos , Camundongos , Asma/metabolismo , Interleucinas/metabolismo , Pulmão/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Pyroglyphidae , Camundongos Endogâmicos BALB CRESUMO
Acinetobacter baumannii is a strictly aerobic, nonmotile, nonfermenting, gram-negative bacillus. It is a highly infectious and invasive pathogen with high mortality and morbidity rates among immunodeficient patients. Due to increasing levels of drug resistance and the inefficiency of existing antimicrobial treatments, it is crucial to develop novel agents to control this pathogen. Several recent studies have investigated virulence factors that are associated with the pathogenesis of A. baumannii, and could thus serve as novel therapeutic targets. The present review comprehensively summarizes the current understanding of these virulence factors and their mechanisms in A. baumannii. We also highlight factors that could be potential therapeutic targets, as well as list candidate virulence factors for future researchers and clinical practitioners.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Humanos , Fatores de Virulência/genética , Virulência , Infecções por Acinetobacter/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana MúltiplaRESUMO
Interleukin 6 (IL-6), an important component of cardiac microenvironment, favors cardiac repair by improving cardiomyocyte regeneration in different models. This study aimed to investigate the effects of IL-6 on stemness maintenances and cardiac differentiation of mouse embryonic stem cells (mESCs). The mESCs were treated with IL-6 for two days, and then subjected to CCK-8 essay for proliferation analysis and quantitative real-time PCR (qPCR) to evaluate the mRNA expression of genes related to stemness and germinal layers differentiation. Phosphorylation levels of stem cell-related signal pathways were detected by Western blot. siRNA was used to interfere the function of STAT3 phosphorylation. Cardiac differentiation was investigated by the percentage of beating embryoid bodies (EBs) and qPCR analysis of cardiac progenitor markers and cardiac ion channels. IL-6 neutralization antibody was applied to block the endogenous IL-6 effects since the onset of cardiac differentiation (embryonic day of 0, EB0). The EBs were collected on EB7, EB10 and EB15 to investigate the cardiac differentiation by qPCR. On EB15, Western blot was applied to investigate the phosphorylation of several signaling pathways, and immunochemistry staining was adopted to trace the cardiomyocytes. IL-6 antibody was administered for two days (short term) on EB4, EB7, EB10 or EB15, and percentages of beating EBs at late developmental stage were recorded. The results showed that exogenous IL-6 promoted mESCs proliferation and favored maintenances of pluripotency, evidenced by up-regulated mRNA expression of oncogenes (c-fos, c-jun) and stemness markers (oct4, nanog), down-regulated mRNA expression of germ layer genes (branchyury, FLK-1, pecam, ncam, sox17), and increased phosphorylation of ERK1/2 and STAT3. siRNA targeting JAK/STAT3 partially attenuated the effects of IL-6 on cell proliferation and mRNA expression of c-fos and c-jun. During differentiation, long term IL-6 neutralization antibody application decreased the percentage of beating EBs, down-regulated mRNA expression of ISL1, GATA4, α-MHC, cTnT, kir2.1, cav1.2, and declined the fluorescence intensity of cardiac α actinin in EBs and single cell. Long term IL-6 antibody treatment decreased the phosphorylation of STAT3. In addition, short term (2 d) IL-6 antibody treatment starting from EB4 significantly reduced the percentage of beating EBs in late development stage, while short term IL-6 antibody treatment starting from EB10 significantly increased the percentage of beating EBs on EB16. These results suggest that exogenous IL-6 promotes mESCs proliferation and favors stemness maintenance. Endogenous IL-6 regulates mESC cardiac differentiation in a development-dependent manner. These findings provide important basis for the study of microenvironment on cell replacement therapy, as well as a new perspective for understanding the pathophysiology of heart diseases.
Assuntos
Interleucina-6 , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Diferenciação Celular , Proteínas Proto-Oncogênicas c-fos , RNA MensageiroRESUMO
The study aims to investigate the effects of cardiac fibroblast (CF) paracrine factors on murine embryonic stem cells (ESCs). Conditioned mediums from either neonatal cardiac fibroblasts (ConM-NCF) or adult cardiac fibroblasts (ConM-ACF) were diluted by 1:50 and 1:5, respectively, to investigate whether these conditioned mediums impact murine ESCs distinctly with RT-real time PCR techniques, cell proliferation essay, ELISA and by counting percentage of beating embryoid bodies (EBs) during ESCs differentiation. The data showed that the paracrine ability of CFs changed dramatically during development, in which interleukin 6 (IL6) increased with maturation. ConM-NCF 1:50 and ConM-NCF 1:5 had opposite effects on the pluripotent markers, although they both reduced mouse ESC proliferation. ConM-ACF 1:50 promoted ESCs pluripotent markers and proliferation, while ConM-ACF 1:5 exerted negative effects. All CF-derived conditioned mediums inhibited cardiac differentiation, but with distinguishable features: ConM-NCF 1:50 slightly decreased the early cardiac differentiation without altering the maturation tendency or cardiac specific markers in EBs at differentiation of day 17; ConM-ACF 1:50 had more significant inhibitory effects on early cardiac differentiation than ConM-NCF 1:50 and impeded cardiac maturation with upregulation of cardiac specific markers. In addition, IL6 neutralization antibody attenuated positive effect of ConM-ACF 1:50 on ESCs proliferation, but had no effects on ConM-NCF 1:50. Long-term IL6 neutralization reduced the percentage of beating EBs at early developmental stage, but did not alter the late cardiac differentiation. Taken together, both the quality and quantity of factors and cytokines secreted by CFs are critical for the ESC fate. IL6 could be a favorable cytokine for ESC pluripotency and the early cardiac differentiation.
Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Murinas , Animais , Fibroblastos , Coração , Camundongos , Comunicação ParácrinaRESUMO
Purpose: Acinetobacter baumannii is the most common microorganism in sputum cultures from long-term hospitalized patients and is often the cause of hospital-acquired pneumonia (HAP), which is usually associated with poor prognosis and high mortality. It is sometimes difficult to distinguish between A. baumannii infection and colonization. This study aimed to evaluate factors that differentiate infection from colonization and predict mortality in patients with nosocomial pneumonia caused by A. baumannii. Patients and Methods: The data used in this study were collected in our hospital between January 2018 and December 2020 from patients whose sputum cultures were positive for A. baumannii. Results: A total of 714 patients were included, with 571 in the infection group and 143 in the colonization group. The in-hospital mortality rate in the infection group was 20.5%. Univariate and multivariate logistic regression analyses showed that age, total number of inpatient departments, absolute neutrophil count, and C-reactive protein (CRP) level helped distinguish between infection and colonization. The area under the receiver operating characteristic curve (ROC) of the identification model was 0.694. In the infection group, age, Charlson comorbidity score, neutrophil-to-lymphocyte ratio, blood urea nitrogen/albumin ratio, CRP level, presence of multidrug resistance, and clinical pulmonary infection score (≥6) ratio were associated with in-hospital mortality. The area under the ROC curve for the prediction model was 0.828. The top three drug resistance rates in the infection group were 100% (cefazolin), 98.77% (ceftriaxone), and 71.8% (cefuroxime). Conclusion: The combination of common parameters helps identify A. baumannii respiratory tract infection or colonization. Several novel predictors can be used to predict the risk of death from A. baumannii pneumonia to reduce mortality. The drug resistance of A. baumannii remains high.
RESUMO
The aim of this study was to look for the chemical constituents of the bulbs of Fritillaria anhuiensis S. C. Chen et S. E. Yin. The bulbs of Fritillaria anhuiensis were extracted with 95% EtOH at reflux. Isolation and purification were performed by silica gel column chromatography. Structures of pure compounds were established on the basis of spectral analysis. Three compounds were obtained and identified as 12,15-epoxy-8(17), 13-labdadien-19-ol (1), ent-3beta-acetoxy-kauran-16beta, 17-diol (2), ent-kaurane-3beta, 16beta, 17-triol (3). Compound 1 is a new labdane-type diterpenoid. Compounds 2 and 3 were obtained from Fritillaria anhuiensis for the first time.