Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Langmuir ; 40(4): 2091-2101, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227788

RESUMO

Phase-selective organogelators (PSOGs) are considered as a prospective tool for their application in oil spill remediation. However, the number of reports on the PSOGs that can be used in powder form for prompt phase-selective gelation of crude oils is still limited. In this study, a series of compounds with l-mandelic acid as the scaffold bearing different amino acid fragments have been prepared. Also, the gelation behaviors and properties of these derivatives toward organic liquids, product oils, and a type of Chinese crude oil were investigated via heating-and-cooling process, stirring, or resting operation. Besides, the micromorphologies of the resulting gels and the driving forces for the gel formation have been studied by scanning electron microscopy, Fourier transform infrared, UV spectroscopy, concentration-dependent 1H NMR, and X-ray diffraction. Particularly, gelator C15-Phe-Mac-Nap was shown to have the capability of congealing the Chinese crude oil selectively from water in powder form with a relatively lower gelator dosage, as compared with the other gelators we reported in the current and previous works. Moreover, gelator C15-Phe-Mac-Nap displayed some advantageous behaviors such as the reusability of gelator, excellent mechanical and chemical stability of the crude oil gels, and nontoxicity of the gelator in the aquatic environment, indicating its great potential application value for marine oil spill remediation.

2.
Bioorg Chem ; 149: 107466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843684

RESUMO

Targeted protein degradation (TPD) technologies have become promising therapeutic approaches through degrading disease-causing proteins via the protein degradation system. Autophagy is a fundamental biological process with a high relationship to protein degradation, which belongs to one of two main protein degradation pathways, the autophagy-lysosomal system. Recently, various autophagy-based TPD techniques ATTECs, AUTACs, and AUTOTACs, etc, have also been gradually developed, and they have achieved efficient degradation potency for the targeted protein, expanding the potential of degradation for large-size proteins or protein aggregates. Herein, we introduce the machinery of autophagy and its relation to protein degradation, and multiple methods for using autophagy to specifically degrade target proteins.


Assuntos
Autofagia , Desenvolvimento de Medicamentos , Proteólise , Autofagia/efeitos dos fármacos , Humanos , Proteólise/efeitos dos fármacos , Lisossomos/metabolismo , Animais , Proteínas/metabolismo , Proteínas/química , Proteínas/antagonistas & inibidores , Estrutura Molecular
3.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110848

RESUMO

KRAS gene mutation is widespread in tumors and plays an important role in various malignancies. Targeting KRAS mutations is regarded as the "holy grail" of targeted cancer therapies. Recently, multiple strategies, including covalent binding strategy, targeted protein degradation strategy, targeting protein and protein interaction strategy, salt bridge strategy, and multivalent strategy, have been adopted to develop KRAS direct inhibitors for anti-cancer therapy. Various KRAS-directed inhibitors have been developed, including the FDA-approved drugs sotorasib and adagrasib, KRAS-G12D inhibitor MRTX1133, and KRAS-G12V inhibitor JAB-23000, etc. The different strategies greatly promote the development of KRAS inhibitors. Herein, the strategies are summarized, which would shed light on the drug discovery for both KRAS and other "undruggable" targets.


Assuntos
Descoberta de Drogas , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Proteólise
4.
Bioorg Med Chem Lett ; 75: 128952, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031018

RESUMO

Prostate cancer (PCa) is the most frequently diagnosed male malignant tumor and remains the second leading cause of male cancer mortality in western countries. The development of novel antiandrogens to circumvent the drug resistance in anti-PCa treatment is highly demanded. Herein, we identified that gossypol (GOS) specificly inhibited the AR signaling. Further optimization of GOS derivatives led to the discovery of compound XY-32. XY-32 efficiently inhibits AR signaling with the IC50 of 1.23 µM. XY-32 downregulates both the full-length AR and the AR variable splice AR-V7 via suppressing the mRNA expression. It inhibits the proliferation of CRPC cells such as the LNCaP cells, the PC-3 cells, and enzalutamide resistance 22Rv1 cells. The work demonstrates the GOS derivatives represent a novel series of anti-androgen to conquer the acquired AR mutations or AR splice variants induced drug resistance of mCRPC.


Assuntos
Gossipol , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Gossipol/farmacologia , Humanos , Masculino , Nitrilas , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Mensageiro , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
5.
Bioorg Med Chem ; 64: 116760, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35483138

RESUMO

Based upon the preliminary design of enhancing genetic barrier to drug-resistant viral mutants by maximizing hydrogen-bonding or other van der Waals contacts, we have designed, synthesized and biologically evaluated a new class of HIV-1 protease inhibitors with phenol derived P2 ligands and nitro or halogens in P2' ligands. Results indicate that a majority of inhibitors exhibit robust enzyme inhibitory with IC50 values in picomolar or single digit nanomolar ranges. Among which, compound 17d displays potency with IC50 value of 21 pM and high protease selectivity. Of note, 17d exhibits greater antiviral activity against the DRV-resistant variant than the efficacy against the wild type virus. Furthermore, the molecular modeling studies demonstrate important interactions between 17d and the active sites of both the wild-type and DRV-resistant HIV-1 protease, as well as furnish insights for further optimization of new inhibitors.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Cristalografia por Raios X , Protease de HIV/química , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Ligantes , Fenóis/farmacologia
6.
Bioorg Chem ; 124: 105829, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490582

RESUMO

Androgen signaling pathway plays an important role in the occurrence and development of prostate cancer (PCa), and anti-androgen drugs are one of the most effective therapies for PCa. Darolutamide 4 (ODM-201) is a promising second- generation antiandrogen because of its unique chemical structure and good activity against androgen receptor (AR). Herein, the structure-activity relationship of ODM-201 was studied, and 37 analogues were synthesized. Half of them exhibited similar or better anti-AR transcriptional activity compared to ODM-201. In addition, the inhibitory activity of compound 28t against the two resistant mutants (AR-F876L and AR-T877A) was superior to that of ODM-201. This study provides a new clue for the further optimization of ODM-201 and the development of anti-CRPC drugs.


Assuntos
Antagonistas de Receptores de Andrógenos , Neoplasias da Próstata , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Pirazóis/química
7.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430656

RESUMO

With the increasing prevalence of drug-resistant variants, novel potent HIV-1 protease inhibitors with broad-spectrum antiviral activity against multidrug-resistant causative viruses are urgently needed. Herein, we designed and synthesized a new series of HIV-1 protease inhibitors with phenols or polyphenols as the P2 ligands and a variety of sulfonamide analogs as the P2' ligands. A number of these new inhibitors showed superb enzymatic inhibitory activity and antiviral activity. In particular, inhibitors 15d and 15f exhibited potent enzymatic inhibitory activity in the low picomolar range, and the latter showed excellent activity against the Darunavir-resistant HIV-1 variant. Furthermore, the molecular modeling studies provided insight into the ligand-binding site interactions between inhibitors and the enzyme cavity, and they sparked inspiration for the further optimization of potent inhibitors.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Ligantes , Polifenóis/farmacologia , Fenóis/farmacologia , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/química
8.
Molecules ; 27(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431829

RESUMO

Cysteine is one of the least abundant amino acids in proteins of many organisms, which plays a crucial role in catalysis, signal transduction, and redox regulation of gene expression. The thiol group of cysteine possesses the ability to perform nucleophilic and redox-active functions that are not feasible for other natural amino acids. Cysteine is the most common covalent amino acid residue and has been shown to react with a variety of warheads, especially Michael receptors. These unique properties have led to widespread interest in this nucleophile, leading to the development of a variety of cysteine-targeting warheads with different chemical compositions. Herein, we summarized the various covalent warheads targeting cysteine residue and their application in drug development.


Assuntos
Cisteína , Desenvolvimento de Medicamentos , Cisteína/química , Aminoácidos/química , Compostos de Sulfidrila/química , Oxirredução
9.
Soft Matter ; 17(46): 10555-10565, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761787

RESUMO

Designing eco-friendly fireproof rigid polyurethane foam (RPUF) that can completely stop fire ignition or spread has significant technological implications, which has been proved to be extremely challenging. Herein, a novel green strategy based on double network hydrogel coating was developed to enhance the flame retardancy of RPUF via a facile casting and curing process. This strategy can create a homogeneous hydrogel fire-resistant layer with strong adhesion on the outermost surface of the substrate. Due to good water holding capacity and excellent thermal management properties, the hydrogel coating showed excellent fire retardancy. As a proof-of-concept, polyacrylic-polydopamine (PAAm-PDA) double network hydrogel coating was applied to an extremely flammable RPUF substrate. Compared with the neat foam, the PAAm-PDA coated RPUF exhibited an overall improvement in fire-safety performance, including a rapid self-quenching behavior, a six-fold enhancement in time to ignition (TTI), and 39.7% and 42.2% decreases in the mean heat release rate (HRR) and total smoke production (TSP), respectively. Furthermore, the tough hydrogel-coated RPUF possessed enough mechanical properties to meet the requirement of its practical applications. Benefiting from its low cost, easy-to-process and eco-friendly characteristics, this hydrogel fireproof coating strategy provides a new direction for developing green and safe structural materials with widespread use.

10.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500776

RESUMO

Salinity gradient energy, as a type of blue energy, is a promising sustainable energy source. Its energy conversion efficiency is significantly determined by the selective membranes. Recently, nanofluidic membrane made by two-dimensional (2D) nanomaterials (e.g., graphene) with densely packed nanochannels has been considered as a high-efficient membrane in the osmotic power generation research field. Herein, the graphene oxide-cellulose acetate (GO-CA) heterogeneous membrane was assembled by combining a porous CA membrane and a layered GO membrane; the combination of 2D nanochannels and 3D porous structures make it show high surface-charge-governed property and excellent ion transport stability, resulting in an efficient osmotic power harvesting. A power density of about 0.13 W/m2 is achieved for the sea-river mimicking system and up to 0.55 W/m2 at a 500-fold salinity gradient. With different functions, the CA and GO membranes served as ion storage layer and ion selection layer, respectively. The GO-CA heterogeneous membrane open a promising avenue for fabrication of porous and layered platform for wide potential applications, such as sustainable power generation, water purification, and seawater desalination.

11.
J Virol ; 93(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30333168

RESUMO

Type I interferon (IFN) inhibits viruses by inducing the expression of antiviral proteins. The IFN-induced myxovirus resistance B (MxB) protein has been reported to inhibit a limited number of viruses, including HIV-1 and herpesviruses, but its antiviral coverage remains to be explored further. Here we show that MxB interferes with RNA replication of hepatitis C virus (HCV) and significantly inhibits viral replication in a cyclophilin A (CypA)-dependent manner. Our data further show that MxB interacts with the HCV protein NS5A, thereby impairing NS5A interaction with CypA and NS5A localization to the endoplasmic reticulum, two events essential for HCV RNA replication. Interestingly, we found that MxB significantly inhibits two additional CypA-dependent viruses of the Flaviviridae family, namely, Japanese encephalitis virus and dengue virus, suggesting a potential link between virus dependence on CypA and virus susceptibility to MxB inhibition. Collectively, these data have identified MxB as a key factor behind IFN-mediated suppression of HCV infection, and they suggest that other CypA-dependent viruses may also be subjected to MxB restriction.IMPORTANCE Viruses of the Flaviviridae family cause major illness and death around the world and thus pose a great threat to human health. Here we show that IFN-inducible MxB restricts several members of the Flaviviridae, including HCV, Japanese encephalitis virus, and dengue virus. This finding not only suggests an active role of MxB in combating these major pathogenic human viruses but also significantly expands the antiviral spectrum of MxB. Our study further strengthens the link between virus dependence on CypA and susceptibility to MxB restriction and also suggests that MxB may employ a common mechanism to inhibit different viruses. Elucidating the antiviral functions of MxB advances our understanding of IFN-mediated host antiviral defense and may open new avenues to the development of novel antiviral therapeutics.


Assuntos
Ciclofilina A/farmacologia , Hepacivirus/fisiologia , Interferons/farmacologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Ciclosporina/farmacologia , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Hepacivirus/efeitos dos fármacos , Humanos , Proteínas de Resistência a Myxovirus/genética , Ligação Proteica/efeitos dos fármacos , Células Vero
12.
Bioorg Med Chem ; 28(16): 115623, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690263

RESUMO

Newly designed HIV-1 protease inhibitors that maximize interactions with the protein backbone, especially in the form of hydrogen bonds, may enhance the antiviral potency of these compounds and minimize acquisition of drug-resistant mutations. Herein, we described a series of new HIV-1 PIs containing phenols as the P2 ligands and chiral isopropanol as the P1' ligands, in combination with 4-trifluoromethylphenylsulfonamide or 4-nitrophenylsulfonamide as the P2' ligands. And most of these compounds exhibited nanomolar inhibitory potency. In particular, inhibitors 13c and 13e with 4-trifluoromethylphenylsulfonamide as the P2' ligand and (R) - isopropanol as the P1' ligand, exhibited antiviral IC50 values of 1.64 nM and 2.33 nM, respectively. Furthermore, they also showed remarkable activity against wild-type and DRV-resistant HIV-1 variants that raised the prospect of designing more effective PIs further.


Assuntos
Desenho de Fármacos , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , 2-Propanol/química , 2-Propanol/farmacologia , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/química , HIV-1/enzimologia , Humanos , Ligantes , Fenóis/química , Fenóis/farmacologia
13.
Bioorg Chem ; 94: 103363, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669092

RESUMO

NVR3-778, one of the most advanced capsid assembly modulators (CAMs), is currently in phase II clinical trial for the treatment of HBV infection. In this study, we reported the first structure optimization of NVR3-778. Compound 2d was found to exhibit more potent anti-HBV activity (IC50: 0.25 µM), lower cytotoxicity (CC50: 10.68 µM) and higher selectivity index (SI: 40.72) than NVR3-778 (IC50: 0.33 µM; CC50: 5.14 µM; SI: 18.36) in vitro, and also display similar inhibitory effect on the assembly of HBV capsids as NVR3-778. Molecular docking further suggested that compound 2d might form a stronger interaction with core protein. Moreover, compound 2d also showed acceptable pharmacokinetic profiles. Currently compound 2d was selected as a new lead for further modifications, and studies to determine the in vivo anti-HBV studies of 2d will begin soon.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Desenho de Fármacos , Vírus da Hepatite B/efeitos dos fármacos , Piperidinas/farmacologia , Antivirais/síntese química , Antivirais/química , Benzamidas/síntese química , Benzamidas/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade
14.
Molecules ; 25(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316104

RESUMO

Multi-target ligand strategies provide a valuable method of drug design. However, to develop a multi-target drug with the desired profile remains a challenge. Herein, we developed a computational method binding-site match maker (BSMM) for the design of multi-target ligands based on binding site matching. BSMM was built based on geometric hashing algorithms and the representation of a binding-site with physicochemical (PC) points. The BSMM software was used to detect proteins with similar binding sites or subsites. In particular, BSMM is independent of protein global folds and sequences and is therefore applicable to the matching of any binding sites. The similar sites between protein pairs with low homology and/or different folds are generally not obvious to the visual inspection. The detection of such similar binding sites by BSMM could be of great value for the design of multi-target ligands.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Sítios de Ligação , Desenho de Fármacos , Ligantes , Modelos Moleculares , Ligação Proteica , Software
15.
J Transl Med ; 17(1): 35, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665429

RESUMO

BACKGROUND: Despite that most HIV-infected individuals experience progressive CD4+ T cell loss and develop AIDS, a minority of HIV-infected individuals remain asymptomatic and maintain high level CD4+ T cell counts several years after seroconversion. Efforts have been made to understand the determinants of the nonprogressive status, exemplified by the clinical course of elite controllers (ECs) who maintain an undetectable viremia and viremic nonprogressors (VNPs) who have a normal CD4+ count in spite of circulating viral load. However, the intrinsic mechanism underlying nonprogression remained elusive. In this study, we performed an integrative analysis of transcriptional profiles to pinpoint the underlying mechanism for a naturally occurring viral control. METHODS: Three microarray datasets, reporting mRNA expression of the LTNPs or ECs in HIV-infected patients, were retrieved from Gene Expression Ominbus (GEO) or Arrayexpress databases. These datasets, profiled on the same type of microarray chip, were selected and merged by a bioinformatic approach to build a meta-analysis derived transcriptome (MADNT). In addition, we investigated the different transcriptional pathways and potential biomarkers in CD4+ and CD8+ cells in ECs and whole blood in VNPs compared to HIV progressors. The combined transcriptome and each subgroup was subject to gene set enrichment analysis and weighted co-expression network analysis to search potential transcription patterns related to the non-progressive status. RESULTS: 30 up-regulated genes and 83 down-regulated genes were identified in lymphocytes from integrative meta-analysis of expression data. The interferon response and innate immune activation was reduced in both CD4+ and CD8+ T cells from ECs. Several characteristic genes including CMPK1, CBX7, EIF3L, EIF4A and ZNF395 were indicated to be highly correlated with viremic control. Besides that, we indicated that the reduction of ribosome components and blockade of translation facilitated AIDS disease progression. Most interestingly, among VNPs who have a relatively high viral load, we detected a two gene-interaction networks which showed a strong correlation to immune control even with a rigorous statistical threshold (p value = 2-e4 and p value = 0.004, respectively) by WGCNA. CONCLUSIONS: We have identified differentially expressed genes and transcriptional patterns in ECs and VNPs compared to normal chronic HIV-infected individuals. Our study provides new insights into the pathogenesis of HIV and AIDS and clues for the therapeutic strategies for anti-retroviral administration.


Assuntos
Perfilação da Expressão Gênica , Genômica , Infecções por HIV/genética , Transcrição Gênica , Bases de Dados Genéticas , Ontologia Genética , Redes Reguladoras de Genes , Sobreviventes de Longo Prazo ao HIV , Humanos , Anotação de Sequência Molecular , Fatores de Tempo , Transcriptoma/genética , Viremia/genética
16.
PLoS Pathog ; 13(9): e1006625, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28938017

RESUMO

Enterovirus 71 (EV71) is the major causative agent of hand, foot and mouth disease (HFMD) in children, causing severe clinical outcomes and even death. Here, we report an important role of the highly conserved alanine residue at position 107 in the capsid protein VP1 (VP1A107) in the efficient replication of EV71. Substitutional mutations of VP1A107 significantly diminish viral growth kinetics without significant effect on viral entry, expression of viral genes and viral production. The results of mechanistic studies reveal that VP1A107 regulates the efficient cleavage of the VP0 precursor during EV71 assembly, which is required, in the next round of infection, for the transformation of the mature virion (160S) into an intermediate or A-particle (135S), a key step of virus uncoating. Furthermore, the results of molecular dynamic simulations and hydrogen-bond networks analysis of VP1A107 suggest that flexibility of the VP1 BC loop or the region surrounding the VP1107 residue directly correlates with viral infectivity. It is possible that sufficient flexibility of the region surrounding the VP1107 residue favors VP0 conformational change that is required for the efficient cleavage of VP0 as well as subsequent viral uncoating and viral replication. Taken together, our data reveal the structural role of the highly conserved VP1A107 in regulating EV71 maturation. Characterization of this novel determinant of EV71 virulence would promote the study on pathogenesis of Enteroviruses.


Assuntos
Enterovirus Humano A/fisiologia , Infecções por Enterovirus/virologia , Células Vero/virologia , Replicação Viral/genética , Aminoácidos/genética , Animais , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Mutação de Sentido Incorreto/genética , Internalização do Vírus
17.
Angew Chem Int Ed Engl ; 58(50): 18146-18149, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31591785

RESUMO

The key issue holding back the application of solid polymeric electrolytes in high-energy density lithium metal batteries is the contradictory requirements of high ion conductivity and mechanical stability. In this work, self-healable solid polymeric electrolytes (SHSPEs) with rigid-flexible backbones and high ion conductivity are synthesized by a facile condensation polymerization approach. The all-solid Li metal full batteries based on the SHSPEs possess freely bending flexibility and stable cycling performance as a result of the more disciplined metal Li plating/stripping, which have great implications as long-lifespan energy sources compatible with other wearable devices.

18.
Arch Insect Biochem Physiol ; 99(2): e21481, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29956367

RESUMO

Energy homeostasis is an essential characteristic of all organisms, requiring fluctuation in energy accumulation, mobilization, and exchange with the external environment. In insects, energy mobilization is under control of the lipase brummer (bmm), which regulates nutritional status by hydrolyzing the ester bonds in triacylglycerol (TAG). In the present study, we investigated the role of bmm in the lipid mobilization and starvation resistance in the brown planthopper (BPH; Nilaparvata lugens), which is economically one of the most important rice pests in Asia. A severe decrease in TAG and glyceride contents was observed in the starved BPHs, while there was a partial rescue after refeeding. The starvation condition caused a significant increase in the expression levels of Nlbmm, and supplement of food after starvation dramatically reduced the Nlbmm expression. Sucrose rescue after starvation significantly suppressed the expression of Nlbmm, while caused an accumulation of TAG and glyceride. Knockdown of Nlbmm by double-stranded RNA treatment extended the lifespan to starvation, whereas it increased the level of TAG and glyceride in the BPHs. The decreased lipolysis rate by dsNlbmm-treated BPHs eventually resulted in increase of starvation resistance. These data demonstrated that the regulation of energy homeostasis by Nlbmm affects starvation resistance, probably through lipid mobilization control in N. lugens.


Assuntos
Metabolismo Energético , Hemípteros/fisiologia , Proteínas de Insetos/genética , Lipase/genética , Mobilização Lipídica , Animais , Feminino , Privação de Alimentos , Hemípteros/enzimologia , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Lipase/metabolismo , Ninfa/enzimologia , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-29230863

RESUMO

The brummer (bmm) genes encode the lipid storage droplet-associated triacylglycerols (TAG) lipases, which belong to the Brummer/Nutrin subfamily. These enzymes hydrolyze the ester bonds in TAG in lipid metabolism and act in insect energy homeostasis. Exposure to some agricultural chemicals leads to increased fecundity, which necessarily involves lipid metabolism, in some planthopper species. However, the biological roles of bmm in planthopper lipid storage and mobilization have not been investigated. Here, the open reading frame (ORF) of bmm (Nlbmm) was cloned and sequenced from the brown planthopper (BPH; Nilaparvata lugens). The ORF is 1014 bp encoding 338 amino acid residues. Nlbmm contained patatin domains and shared considerable evolutionary conservation with other insect bmms. Nlbmm is highly expressed in the fat body, consistent with its roles in lipid metabolism. Injection with Nlbmm double-stranded RNA (dsNlbmm) led to reduced Nlbmm mRNA accumulation, but did not influence expression of several genes related to lipid synthesis including acyl-CoA-binding protein (ACBP), acetyl-CoA carboxylase (ACC), and a lipophorin receptor (LpR). Nlbmm knockdown led to increased TAG contents in whole bodies, accumulation of total fat body lipid, and decreased hemolymph lipid content. Nlbmm knockdown did not influence the synthesis and distribution of glycerol. We infer that Nlbmm acts in TAG breakdown and fat metabolism in N. lugens.


Assuntos
Hemípteros/genética , Lipase/genética , Metabolismo dos Lipídeos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Expressão Gênica , Hemípteros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lipase/metabolismo , Filogenia , Interferência de RNA
20.
Molecules ; 22(9)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878188

RESUMO

Polypharmacology plays an important role in drug discovery and polypharmacology drug strategies provide a novel path in drug design. However, to develop a polypharmacology drug with the desired profile remains a challenge. Previously, we developed a free web-accessible database called Multiple Target Ligand Database (MTLD, www.mtdcadd.com). Herein, the MTLD database has been updated, containing 2444 Multiple Target Ligands (MTLs) that bind with 21,424 binding sites from 18,231 crystal structures. Of the MTLs, 304 entries are approved drugs, and 1911 entries are drug-like compounds. Also, we added new functions such as multiple conditional search and linkage visualization. Through querying the updated database, extremely useful information for the development of polypharmacology drugs may be provided.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Bases de Dados de Proteínas , Polifarmacologia , Proteínas/química , Sítios de Ligação , Mineração de Dados , Descoberta de Drogas , Humanos , Ligantes , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA