Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.716
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36240781

RESUMO

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Nociceptores/fisiologia , Substância P , Disbiose , Inflamação
2.
Cell ; 184(25): 6010-6014, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34890548

RESUMO

The COVID-19 information epidemic, or "infodemic," demonstrates how unlimited access to information may confuse and influence behaviors during a health emergency. However, the study of infodemics is relatively new, and little is known about their relationship with epidemics management. Here, we discuss unresolved issues and propose research directions to enhance preparedness for future health crises.


Assuntos
COVID-19/psicologia , Infodemia , Disseminação de Informação/ética , COVID-19/epidemiologia , Epidemias/psicologia , Humanos , Disseminação de Informação/métodos , Saúde Pública , Pesquisa/tendências , SARS-CoV-2
3.
Nat Immunol ; 23(2): 251-261, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35102343

RESUMO

Tumor necrosis factor (TNF) drives chronic inflammation and cell death in the intestine, and blocking TNF is a therapeutic approach in inflammatory bowel disease (IBD). Despite this knowledge, the pathways that protect the intestine from TNF are incompletely understood. Here we demonstrate that group 3 innate lymphoid cells (ILC3s) protect the intestinal epithelium from TNF-induced cell death. This occurs independent of interleukin-22 (IL-22), and we identify that ILC3s are a dominant source of heparin-binding epidermal growth factor-like growth factor (HB-EGF). ILC3s produce HB-EGF in response to prostaglandin E2 (PGE2) and engagement of the EP2 receptor. Mice lacking ILC3-derived HB-EGF exhibit increased susceptibility to TNF-mediated epithelial cell death and experimental intestinal inflammation. Finally, human ILC3s produce HB-EGF and are reduced from the inflamed intestine. These results define an essential role for ILC3-derived HB-EGF in protecting the intestine from TNF and indicate that disruption of this pathway contributes to IBD.


Assuntos
Fator de Crescimento Semelhante a EGF de Ligação à Heparina/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
4.
Immunity ; 52(2): 207-209, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075721

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident lymphocytes that promote immunity to pathogens at mucosal barriers, but the mechanisms regulating their development within tissues remain poorly understood. In this issue of Immunity, Oherle et al. identify a niche in the neonatal airway where stromal cell-derived insulin-like growth factor 1 (IGF1) supports the proliferation of ILC precursors and protects from infection.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Recém-Nascido , Fator de Crescimento Insulin-Like I , Pulmão
5.
Nature ; 609(7925): 159-165, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831503

RESUMO

RORγt is a lineage-specifying transcription factor that is expressed by immune cells that are enriched in the gastrointestinal tract and promote immunity, inflammation and tissue homeostasis1-15. However, fundamental questions remain with regard to the cellular heterogeneity among these cell types, the mechanisms that control protective versus inflammatory properties and their functional redundancy. Here we define all RORγt+ immune cells in the intestine at single-cell resolution and identify a subset of group 3 innate lymphoid cells (ILC3s) that expresses ZBTB46, a transcription factor specifying conventional dendritic cells16-20. ZBTB46 is robustly expressed by CCR6+ lymphoid-tissue-inducer-like ILC3s that are developmentally and phenotypically distinct from conventional dendritic cells, and its expression is imprinted by RORγt, fine-tuned by microbiota-derived signals and increased by pro-inflammatory cytokines. ZBTB46 restrains the inflammatory properties of ILC3s, including the OX40L-dependent expansion of T helper 17 cells and the exacerbated intestinal inflammation that occurs after enteric infection. Finally, ZBTB46+ ILC3s are a major source of IL-22, and selective depletion of this population renders mice susceptible to enteric infection and associated intestinal inflammation. These results show that ZBTB46 is a transcription factor that is shared between conventional dendritic cells and ILC3s, and identify a cell-intrinsic function for ZBTB46 in restraining the pro-inflammatory properties of ILC3s and a non-redundant role for ZBTB46+ ILC3s in orchestrating intestinal health.


Assuntos
Imunidade Inata , Intestinos , Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Fatores de Transcrição , Animais , Inflamação/imunologia , Inflamação/patologia , Interleucinas , Intestinos/citologia , Intestinos/imunologia , Intestinos/patologia , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ligante OX40/metabolismo , Receptores CCR6/metabolismo , Células Th17/citologia , Células Th17/imunologia , Fatores de Transcrição/metabolismo , Interleucina 22
6.
Nature ; 610(7933): 744-751, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071169

RESUMO

Microbial colonization of the mammalian intestine elicits inflammatory or tolerogenic T cell responses, but the mechanisms controlling these distinct outcomes remain poorly understood, and accumulating evidence indicates that aberrant immunity to intestinal microbiota is causally associated with infectious, inflammatory and malignant diseases1-8. Here we define a critical pathway controlling the fate of inflammatory versus tolerogenic T cells that respond to the microbiota and express the transcription factor RORγt. We profiled all RORγt+ immune cells at single-cell resolution from the intestine-draining lymph nodes of mice and reveal a dominant presence of T regulatory (Treg) cells and lymphoid tissue inducer-like group 3 innate lymphoid cells (ILC3s), which co-localize at interfollicular regions. These ILC3s are distinct from extrathymic AIRE-expressing cells, abundantly express major histocompatibility complex class II, and are necessary and sufficient to promote microbiota-specific RORγt+ Treg cells and prevent their expansion as inflammatory T helper 17 cells. This occurs through ILC3-mediated antigen presentation, αV integrin and competition for interleukin-2. Finally, single-cell analyses suggest that interactions between ILC3s and RORγt+ Treg cells are impaired in inflammatory bowel disease. Our results define a paradigm whereby ILC3s select for antigen-specific RORγt+ Treg cells, and against T helper 17 cells, to establish immune tolerance to the microbiota and intestinal health.


Assuntos
Tolerância Imunológica , Intestinos , Linfócitos , Microbiota , Linfócitos T Reguladores , Animais , Imunidade Inata , Integrina alfaV/metabolismo , Interleucina-2/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Linfonodos/citologia , Linfonodos/imunologia , Linfócitos/imunologia , Microbiota/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fatores de Transcrição/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia
7.
Proc Natl Acad Sci U S A ; 121(21): e2313797121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709948

RESUMO

During 2010 to 2020, Northeast Pacific (NEP) sea surface temperature (SST) experienced the warmest decade ever recorded, manifested in several extreme marine heatwaves, referred to as "warm blob" events, which severely affect marine ecosystems and extreme weather along the west coast of North America. While year-to-year internal climate variability has been suggested as a cause of individual events, the causes of the continuous dramatic NEP SST warming remain elusive. Here, we show that other than the greenhouse gas (GHG) forcing, rapid aerosol abatement in China over the period likely plays an important role. Anomalous tropospheric warming induced by declining aerosols in China generated atmospheric teleconnections from East Asia to the NEP, featuring an intensified and southward-shifted Aleutian Low. The associated atmospheric circulation anomaly weakens the climatological westerlies in the NEP and warms the SST there by suppressing the evaporative cooling. The aerosol-induced mean warming of the NEP SST, along with internal climate variability and the GHG-induced warming, made the warm blob events more frequent and intense during 2010 to 2020. As anthropogenic aerosol emissions continue to decrease, there is likely to be an increase in NEP warm blob events, disproportionately large beyond the direct radiative effects.

8.
Proc Natl Acad Sci U S A ; 120(48): e2309506120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983498

RESUMO

African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vesículas Extracelulares , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Macrófagos/metabolismo , Monócitos/metabolismo , Vesículas Extracelulares/metabolismo
9.
Plant J ; 118(2): 506-518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169508

RESUMO

Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.


Assuntos
Infertilidade , Oryza , Troca Genética , Mutação Puntual , Oryza/genética , Melhoramento Vegetal
10.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268487

RESUMO

MOTIVATION: Utilizing both purebred and crossbred data in animal genetics is widely recognized as an optimal strategy for enhancing the predictive accuracy of breeding values. Practically, the different genetic background among several purebred populations and their crossbred offspring populations limits the application of traditional prediction methods. Several studies endeavor to predict the crossbred performance via the partial relationship, which divides the data into distinct sub-populations based on the common genetic background, such as one single purebred population and its corresponding crossbred descendant. However, this strategy makes prediction inaccurate due to ignoring half of the parental information of crossbreed animals. Furthermore, dominance effects, although playing a significant role in crossbreeding systems, cannot be modeled under such a prediction model. RESULTS: To overcome this weakness, we developed a novel multi-breed single-step model using metafounders to assess ancestral relationships across diverse breeds under a unified framework. We proposed to use multi-breed dominance combined relationship matrices to model additive and dominance effects simultaneously. Our method provides a straightforward way to evaluate the heterosis of crossbreeds and the breeding values of purebred parents efficiently and accurately. We performed simulation and real data analyses to verify the potential of our proposed method. Our proposed model improved prediction accuracy under all scenarios considered compared to commonly used methods. AVAILABILITY AND IMPLEMENTATION: The software for implementing our method is available at https://github.com/CAU-TeamLiuJF/MAGE.


Assuntos
Genoma , Hibridização Genética , Animais , Genômica/métodos , Simulação por Computador , Software , Modelos Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único , Fenótipo
11.
Hum Genomics ; 18(1): 33, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566168

RESUMO

The N6-methyladenosine (m6A) RNA modification plays essential roles in multiple biological processes, including stem cell fate determination. To explore the role of the m6A modification in pluripotent reprogramming, we used RNA-seq to map m6A effectors in human iPSCs, fibroblasts, and H9 ESCs, as well as in mouse ESCs and fibroblasts. By integrating the human and mouse RNA-seq data, we found that 19 m6A effectors were significantly upregulated in reprogramming. Notably, IGF2BPs, particularly IGF2BP1, were among the most upregulated genes in pluripotent cells, while YTHDF3 had high levels of expression in fibroblasts. Using quantitative PCR and Western blot, we validated the pluripotency-associated elevation of IGF2BPs. Knockdown of IGF2BP1 induced the downregulation of stemness genes and exit from pluripotency. Proteome analysis of cells collected at both the beginning and terminal states of the reprogramming process revealed that the IGF2BP1 protein was positively correlated with stemness markers SOX2 and OCT4. The eCLIP-seq target analysis showed that IGF2BP1 interacted with the coding sequence (CDS) and 3'UTR regions of the SOX2 transcripts, in agreement with the location of m6A modifications. This study identifies IGF2BP1 as a vital pluripotency-associated m6A effector, providing new insight into the interplay between m6A epigenetic modifications and pluripotent reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Epigênese Genética , Fibroblastos/metabolismo , Reprogramação Celular/genética
12.
Nature ; 568(7752): 405-409, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944470

RESUMO

Interleukin (IL)-2 is a pleiotropic cytokine that is necessary to prevent chronic inflammation in the gastrointestinal tract1-4. The protective effects of IL-2 involve the generation, maintenance and function of regulatory T (Treg) cells4-8, and the use of low doses of IL-2 has emerged as a potential therapeutic strategy for patients with inflammatory bowel disease9. However, the cellular and molecular pathways that control the production of IL-2 in the context of intestinal health are undefined. Here we show, in a mouse model, that IL-2 is acutely required to maintain Treg cells and immunological homeostasis throughout the gastrointestinal tract. Notably, lineage-specific deletion of IL-2 in T cells did not reduce Treg cells in the small intestine. Unbiased analyses revealed that, in the small intestine, group-3 innate lymphoid cells (ILC3s) are the dominant cellular source of IL-2, which is induced selectively by IL-1ß. Macrophages in the small intestine produce IL-1ß, and activation of this pathway involves MYD88- and NOD2-dependent sensing of the microbiota. Our loss-of-function studies show that ILC3-derived IL-2 is essential for maintaining Treg cells, immunological homeostasis and oral tolerance to dietary antigens in the small intestine. Furthermore, production of IL-2 by ILC3s was significantly reduced in the small intestine of patients with Crohn's disease, and this correlated with lower frequencies of Treg cells. Our results reveal a previously unappreciated pathway in which a microbiota- and IL-1ß-dependent axis promotes the production of IL-2 by ILC3s to orchestrate immune regulation in the intestine.


Assuntos
Imunidade Inata/imunologia , Interleucina-2/imunologia , Intestinos/citologia , Intestinos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos/administração & dosagem , Antígenos/imunologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Feminino , Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-2/deficiência , Interleucina-2/metabolismo , Intestino Delgado/citologia , Intestino Delgado/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Linfócitos T Reguladores/classificação , Linfócitos T Reguladores/metabolismo
13.
Nature ; 574(7779): 543-548, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645720

RESUMO

Multicellular organisms have co-evolved with complex consortia of viruses, bacteria, fungi and parasites, collectively referred to as the microbiota1. In mammals, changes in the composition of the microbiota can influence many physiologic processes (including development, metabolism and immune cell function) and are associated with susceptibility to multiple diseases2. Alterations in the microbiota can also modulate host behaviours-such as social activity, stress, and anxiety-related responses-that are linked to diverse neuropsychiatric disorders3. However, the mechanisms by which the microbiota influence neuronal activity and host behaviour remain poorly defined. Here we show that manipulation of the microbiota in antibiotic-treated or germ-free adult mice results in significant deficits in fear extinction learning. Single-nucleus RNA sequencing of the medial prefrontal cortex of the brain revealed significant alterations in gene expression in excitatory neurons, glia and other cell types. Transcranial two-photon imaging showed that deficits in extinction learning after manipulation of the microbiota in adult mice were associated with defective learning-related remodelling of postsynaptic dendritic spines and reduced activity in cue-encoding neurons in the medial prefrontal cortex. In addition, selective re-establishment of the microbiota revealed a limited neonatal developmental window in which microbiota-derived signals can restore normal extinction learning in adulthood. Finally, unbiased metabolomic analysis identified four metabolites that were significantly downregulated in germ-free mice and have been reported to be related to neuropsychiatric disorders in humans and mouse models, suggesting that microbiota-derived compounds may directly affect brain function and behaviour. Together, these data indicate that fear extinction learning requires microbiota-derived signals both during early postnatal neurodevelopment and in adult mice, with implications for our understanding of how diet, infection, and lifestyle influence brain health and subsequent susceptibility to neuropsychiatric disorders.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Metabolômica , Microbiota/fisiologia , Neurônios/fisiologia , Animais , Antibacterianos/farmacologia , Transtorno Autístico/metabolismo , Sangue/metabolismo , Cálcio/metabolismo , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Sinais (Psicologia) , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Fezes/química , Vida Livre de Germes , Indicã/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Microbiota/imunologia , Inibição Neural , Neuroglia/patologia , Neuroglia/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/patologia , Fenilpropionatos/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/imunologia , Córtex Pré-Frontal/fisiologia , Esquizofrenia/metabolismo , Transcriptoma , Nervo Vago/fisiologia
14.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806818

RESUMO

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Assuntos
Claudinas , Células Endoteliais , Pulmão , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Pulmão/irrigação sanguínea , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Claudinas/metabolismo , Claudinas/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Claudina-4/metabolismo , Claudina-4/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Endotélio Vascular/patologia , Células Cultivadas , Permeabilidade Capilar , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/virologia , Lesão Pulmonar Aguda/patologia , Citocinas/metabolismo
15.
Cell Mol Life Sci ; 81(1): 81, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334797

RESUMO

Papillary thyroid carcinoma (PTC) stands as the leading cancer type among endocrine malignancies, and there exists a strong correlation between thyroid cancer and obesity. However, the clinical significance and molecular mechanism of lipid metabolism in the development of PTC remain unclear. In this study, it was demonstrated that the downregulation of METTL16 enhanced lipid metabolism and promoted the malignant progression of PTC. METTL16 was expressed at lower levels in PTC tissues because of DNMT1-mediated hypermethylation of its promoter. Loss- and gain-of-function studies clarified the effects of METTL16 on PTC progression. METTL16 overexpression increased the abundance of m6A in SCD1 cells, increasing RNA decay via the m6A reader YTHDC2. The SCD1 inhibitor A939572 inhibited growth and slowed down lipid metabolism in PTC cells. These results confirm the crucial role of METTL16 in restraining PTC progression through SCD1-activated lipid metabolism in cooperation with YTHDC2. This suggests that the combination of METTL16 and anti-SCD1 blockade might constitute an effective therapy for PTC.


Assuntos
Metabolismo dos Lipídeos , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Metabolismo dos Lipídeos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Metilação de DNA , Linhagem Celular Tumoral , Proliferação de Células , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
16.
Nucleic Acids Res ; 51(19): 10194-10217, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37638746

RESUMO

Incorporation of histone variant H3.3 comprises active territories of chromatin. Exploring the function of H3.3 in prostate cancer (PC), we found that knockout (KO) of H3.3 chaperone HIRA suppresses PC growth in vitro and in xenograft settings, deregulates androgen-induced gene expression and alters androgen receptor (AR) binding within enhancers of target genes. H3.3 affects transcription in multiple ways, including activation of p300 by phosphorylated H3.3 at Ser-31 (H3.3S31Ph), which results in H3K27 acetylation (H3K27Ac) at enhancers. In turn, H3K27Ac recruits bromodomain protein BRD4 for enhancer-promoter interaction and transcription activation. We observed that HIRA KO reduces H3.3 incorporation, diminishes H3.3S31Ph and H3K27Ac, modifies recruitment of BRD4. These results suggest that H3.3-enriched enhancer chromatin serves as a platform for H3K27Ac-mediated BRD4 recruitment, which interacts with and retains AR at enhancers, resulting in transcription reprogramming. In addition, HIRA KO deregulates glucocorticoid- (GR) driven transcription of genes co-regulated by AR and GR, suggesting a common H3.3/HIRA-dependent mechanism of nuclear receptors function. Expression of HIRA complex proteins is increased in PC compared with normal prostate tissue, especially in high-risk PC groups, and is associated with a negative prognosis. Collectively, our results demonstrate function of HIRA-dependent H3.3 pathway in regulation of nuclear receptors activity.


Assuntos
Histonas , Proteínas Nucleares , Humanos , Masculino , Androgênios/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Elementos Facilitadores Genéticos
17.
Proc Natl Acad Sci U S A ; 119(29): e2201169119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858300

RESUMO

Protein kinase R (PKR) is a critical host restriction factor against invading viral pathogens. However, this molecule is inactivated in the cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), an economically devastating pathogen to the world swine industry. Here, we report that this event is to suppress cellular inflammation and is mediated by the viral replicase protein nsp1ß. We show that nsp1ß is a stress-responsive protein, enters virus-induced stress granules (SGs) during infection, and repurposes SGs into a proviral platform, where it co-opts the SG core component G3BP1 to interact with PKR in a regulated manner. RNA interference silencing of G3BP1 or mutation of specific nsp1ß residues (VS19GG) can abolish the antagonization of PKR activation. The viral mutant carrying the corresponding mutations induces elevated level of PKR phosphorylation and pronounced production of inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin [IL]-6, and IL-8), whereas small-interfering RNA knockdown of PKR or treatment with C16, a PKR inhibitor, blocks this effect. Thus, PRRSV has evolved a unique strategy to evade PKR restriction to suppress host inflammatory responses.


Assuntos
Fatores de Restrição Antivirais , DNA Helicases , Evasão da Resposta Imune , Proteínas de Ligação a Poli-ADP-Ribose , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Proteínas não Estruturais Virais , eIF-2 Quinase , Animais , Fatores de Restrição Antivirais/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse/virologia , Suínos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , eIF-2 Quinase/metabolismo
18.
Genomics ; 116(2): 110782, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38176574

RESUMO

There is an increasing understanding that a reference genome representing an individual cannot capture all the gene repertoire of a species. Here, we conduct a population-scale missing sequences detection of Chinese domestic pigs using whole-genome sequencing data from 534 individuals. We identify 132.41 Mb of sequences absent in the reference assembly, including eight novel genes. In particular, the breeds spread in Chinese high-altitude regions perform significantly different frequencies of new sequences in promoters than other breeds. Furthermore, we dissect the role of non-coding variants and identify a novel sequence inserted in the 3'UTR of the FMO3 gene, which may be associated with the intramuscular fat phenotype. This novel sequence could be a candidate marker for meat quality. Our study provides a comprehensive overview of the missing sequences in Chinese domestic pigs and indicates that this dataset is a valuable resource for understanding the diversity and biology of pigs.


Assuntos
Genoma , Sus scrofa , Animais , Cruzamento , China , Fenótipo , Sus scrofa/genética , Suínos/genética
19.
J Biol Chem ; 299(2): 102881, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626986

RESUMO

Mutations in genes involved in mitochondrial proline catabolism lead to the rare genetic disorder hyperprolinemia in humans. We have previously reported that mutations of proline catabolic genes in Caenorhabditis elegans impair mitochondrial homeostasis and shorten life span, and that these effects surprisingly occur in a diet type-dependent manner. Therefore, we speculated that a specific dietary component may mitigate the adverse effects of defective proline catabolism. Here, we discovered that high dietary glucose, which is generally detrimental to health, actually improves mitochondrial homeostasis and life span in C. elegans with faulty proline catabolism. Mechanistically, defective proline catabolism results in a shift of glucose catabolism toward the pentose phosphate pathway, which is crucial for cellular redox balance. This shift helps to maintain mitochondrial reactive oxygen species homeostasis and to extend life span, as suppression of the pentose phosphate pathway enzyme GSPD-1 prevents the favorable effects of high glucose. In addition, we demonstrate that this crosstalk between proline and glucose catabolism is mediated by the transcription factor DAF-16. Altogether, these findings suggest that a glucose-rich diet may be advantageous in certain situations and might represent a potentially viable treatment strategy for disorders involving impaired proline catabolism.


Assuntos
Caenorhabditis elegans , Glucose , Longevidade , Animais , Humanos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Prolina/metabolismo
20.
BMC Genomics ; 25(1): 331, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565992

RESUMO

BACKGROUND: The pig (Sus Scrofa) is one of the oldest domesticated livestock species that has undergone extensive improvement through modern breeding. European breeds have advantages in lean meat development and highly-productive body type, whereas Asian breeds possess extraordinary fat deposition and reproductive performance. Consequently, Eurasian breeds have been extensively used to develop modern commercial breeds for fast-growing and high prolificacy. However, limited by the sequencing technology, the genome architecture of some nascent developed breeds and the human-mediated impact on their genomes are still unknown. RESULTS: Through whole-genome analysis of 178 individuals from an Asian locally developed pig breed, Beijing Black pig, and its two ancestors from two different continents, we found the pervasive inconsistent gene trees and species trees across the genome of Beijing Black pig, which suggests its introgressive hybrid origin. Interestingly, we discovered that this developed breed has more genetic relationships with European pigs and an unexpected introgression from Asian pigs to this breed, which indicated that human-mediated introgression could form the porcine genome architecture in a completely different type compared to native introgression. We identified 554 genomic regions occupied 63.30 Mb with signals of introgression from the Asian ancestry to Beijing Black pig, and the genes in these regions enriched in pathways associated with meat quality, fertility, and disease-resistant. Additionally, a proportion of 7.77% of genomic regions were recognized as regions that have been under selection. Moreover, combined with the results of a genome-wide association study for meat quality traits in the 1537 Beijing Black pig population, two important candidate genes related to meat quality traits were identified. DNAJC6 is related to intramuscular fat content and fat deposition, and RUFY4 is related to meat pH and tenderness. CONCLUSIONS: Our research provides insight for analyzing the origins of nascent developed breeds and genome-wide selection remaining in the developed breeds mediated by humans during modern breeding.


Assuntos
Introgressão Genética , Estudo de Associação Genômica Ampla , Humanos , Animais , Suínos/genética , Genoma , Genômica/métodos , Cruzamento , Polimorfismo de Nucleotídeo Único , Sus scrofa/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA