RESUMO
BACKGROUND: Whether fetal cardiothoracic ratio (CTR) is constant or increasing with gestational age (GA) is controversial. The majority of the fetal CTR data has been obtained through ultrasound. PURPOSE: To retrospectively analyze CTR of diameter, area, and circumference on prenatal MR images in a low-risk population of singleton pregnancies, and to clarify its diagnostic value. STUDY TYPE: Retrospective. SUBJECTS: 1024 low-risk singleton pregnancies undergoing MRI. FIELD STRENGTH: Balanced steady state free precession sequence and single shot-fast spin echo sequence at 1.5 Tesla. ASSESSMENT: Pregnancy clinical data were recorded and diameter, area, and circumference of the fetal heart and thorax were measured by two researchers with 6 and 7 years of radiology experience, respectively, and their variation with GA was investigated. The relationship between CTRs with GA was also investigated. Finally, the value of CTR in the diagnosis of fetuses with abnormal development was explored by using receiver operating characteristic (ROC) curves. STATISTICAL TESTS: Linear regression and ROC curves. A P value <0.05 was considered significant. RESULTS: There were significant positive linear correlations (R2 > 0.7, P < 0.0001) between the diameter, area, and circumference of the heart and thorax with GA. The CTRs remain constant values and do not change with GA. The 5th, 50th, and 95th percentiles of the CTR in 21-38 weeks GA were 0.32, 0.39, and 0.48 respectively. The corresponding percentiles for the area ratio were 0.15, 0.21 and 0.27, respectively, and for the circumference ratio were 0.40, 0.46, and 0.52, respectively. Based on ROC curves of CTR with three methods, the area under curves (AUCs) were up to 0.95, the sensitivity and the specificity were more than 88%. DATA CONCLUSION: Reference ranges of fetal CTR were established using MRI, which remain constant. These may be helpful in making a definitive diagnosis in fetuses with abnormal development. TECHNICAL EFFICACY: Stage 2.
RESUMO
OBJECTIVE: To investigate the factors associated with brain frailty and the effect of brain frailty in patients with anterior circulation large artery occlusion (AC-LAO). METHODS: 1100 patients with AC-LVO consecutively admitted to the Second Hospital of Hebei Medical University, North China between June 2016 and April 2018 were retrospectively analyzed. The variables associated with brain frailty and stroke outcome were analyzed by ANOVA analysis, the Mann-Whitney U test and multiple linear regression. Based on previous research. Brain frailty score comprises 1 point each for white matter hyperintensity (WMH), old infarction lesions, and cerebral atrophy among 983 participants with baseline brain magnetic resonance imaging or computed tomography. RESULTS: Among AC-LAO participants, baseline brain frailty score ≥ 1 was common (750/983, 76.3%). Duration of hypertension > 5 years (mean difference [MD] 0.236, 95% CI 0.077, 0.395, p = 0.004), multiple vessel occlusion (MD 0.339, 95% CI 0.068, 0.611, p = 0.014) and basal ganglia infarction (MD -0.308, 95% CI -0.456, -0.160, p < 0.001) were independently associated with brain frailty score. Brain frailty score was independently associated with stroke events, and higher brain frailty scores were associated with higher rates of stroke events (p < 0.001). However, brain frailty has no independent effect on short-term outcome of ACI in AC-LAO patients. CONCLUSIONS: In AC-LAO patients, older age, duration of hypertension > 5 years, and multiple vessel occlusion influenced the brain frailty score. Brain frailty score was independently associated with the occurrence of stroke events in AC-LAO patients.
Assuntos
Isquemia Encefálica , Fragilidade , Hipertensão , Acidente Vascular Cerebral , Humanos , Estudos Retrospectivos , Fragilidade/complicações , Fragilidade/epidemiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/epidemiologia , Encéfalo , Artérias , InfartoRESUMO
Oil palm, a tropical woody oil crop, is widely used in food, cosmetics, and pharmaceuticals due to its high production efficiency and economic value. Palm oil is rich in free fatty acids, polyphenols, vitamin E, and other nutrients, which are beneficial for human health when consumed appropriately. Therefore, investigating the dynamic changes in free fatty acid content at different stages of development and hypothesizing the influence of regulatory genes on free fatty acid metabolism is crucial for improving palm oil quality and accelerating industry growth. LC-MS/MS is used to analyze the composition and content of free fatty acids in the flesh after 95 days (MS1 and MT1), 125 days (MS2 and MT2), and 185 days (MS3 and MT3) of Seedless (MS) and Tenera (MT) oil palm species fruit pollination. RNA-Seq was used to analyze the expression of genes regulating free fatty acid synthesis and accumulation, with differences in genes and metabolites mapped to the KEGG pathway map using the KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis method. A metabolomics study identified 17 types of saturated and 13 types of unsaturated free fatty acids during the development of MS and MT. Transcriptomic research revealed that 10,804 significantly different expression genes were acquired in the set differential gene threshold between MS and MT. The results showed that FabB was positively correlated with the contents of three main free fatty acids (stearic acid, myristate acid, and palmitic acid) and negatively correlated with the contents of free palmitic acid in the flesh of MS and MT. ACSL and FATB were positively correlated with the contents of three main free fatty acids and negatively correlated with free myristate acid. The study reveals that the expression of key enzyme genes, FabB and FabF, may improve the synthesis of free myristate in oil palm flesh, while FabF, ACSL, and FATB genes may facilitate the production of free palmitoleic acid. These genes may also promote the synthesis of free stearic acid and palmitoleic acid in oil palm flesh. However, the FabB gene may inhibit stearic acid synthesis, while ACSL and FATB genes may hinder myristate acid production. This study provides a theoretical basis for improving palm oil quality.
Assuntos
Arecaceae , Ácidos Graxos não Esterificados , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos/metabolismo , Óleo de Palmeira , Cromatografia Líquida , Miristatos/metabolismo , Arecaceae/genética , Arecaceae/metabolismo , Espectrometria de Massas em Tandem , Ácidos Graxos Insaturados/metabolismo , Ácido Palmítico/metabolismo , Perfilação da Expressão Gênica , Ácidos Esteáricos/metabolismo , Óleos de Plantas/metabolismoRESUMO
AP2/ERF transcription factor genes play an important role in regulating the responses of plants to various abiotic stresses, such as cold, drought, high salinity, and high temperature. However, less is known about the function of oil palm AP2/ERF genes. We previously obtained 172 AP2/ERF genes of oil palm and found that the expression of EgAP2.25 was significantly up-regulated under salinity, cold, or drought stress conditions. In the present study, the sequence characterization and expression analysis for EgAP2.25 were conducted, showing that it was transiently over-expressed in Nicotiana tabacum L. The results indicated that transgenic tobacco plants over-expressing EgAP2.25 could have a stronger tolerance to salinity stress than wild-type tobacco plants. Compared with wild-type plants, the over-expression lines showed a significantly higher germination rate, better plant growth, and less chlorophyll damage. In addition, the improved salinity tolerance of EgAP2.25 transgenic plants was mainly attributed to higher antioxidant enzyme activities, increased proline and soluble sugar content, reduced H2O2 production, and lower MDA accumulation. Furthermore, several stress-related marker genes, including NtSOD, NtPOD, NtCAT, NtERD10B, NtDREB2B, NtERD10C, and NtP5CS, were significantly up-regulated in EgAP2.25 transgenic tobacco plants subjected to salinity stress. Overall, over-expression of the EgAP2.25 gene significantly enhanced salinity stress tolerance in transgenic tobacco plants. This study lays a foundation for further exploration of the regulatory mechanism of the EgAP2.25 gene in conferring salinity tolerance in oil palm.
Assuntos
Arecaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Arecaceae/genética , Arecaceae/metabolismo , Germinação/genética , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genéticaRESUMO
Oil palm (Elaeis guineensis Jacq.) is a typical tropical oil crop with a temperature of 26-28 °C, providing approximately 35% of the total world's vegetable oil. Growth and productivity are significantly affected by low-temperature stress, resulting in inhibited growth and substantial yield losses. To comprehend the intricate molecular mechanisms underlying the response and acclimation of oil palm under low-temperature stress, multi-omics approaches, including metabolomics, proteomics, and transcriptomics, have emerged as powerful tools. This comprehensive review aims to provide an in-depth analysis of recent advancements in multi-omics studies on oil palm under low-temperature stress, including the key findings from omics-based research, highlighting changes in metabolite profiles, protein expression, and gene transcription, as well as including the potential of integrating multi-omics data to reveal novel insights into the molecular networks and regulatory pathways involved in the response to low-temperature stress. This review also emphasizes the challenges and prospects of multi-omics approaches in oil palm research, providing a roadmap for future investigations. Overall, a better understanding of the molecular basis of the response of oil palm to low-temperature stress will facilitate the development of effective breeding and biotechnological strategies to improve the crop's resilience and productivity in changing climate scenarios.
Assuntos
Arecaceae , Metabolômica , Proteômica , Transcriptoma , Metabolômica/métodos , Proteômica/métodos , Arecaceae/metabolismo , Arecaceae/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Estresse Fisiológico , Resposta ao Choque Frio , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , MultiômicaRESUMO
Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.
Assuntos
Arecaceae , Peróxido de Hidrogênio , Catalase/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Transcriptoma , Arecaceae/genética , Arecaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Recent years have witnessed the rapid development of self-healing and recyclable materials because they can extend the life of the material. For polysiloxane materials, exploring polysiloxanes with high-strength and self-healing properties remains a challenge. In this work, a high-strength and self-healing polysiloxane containing N-acetyl-L-cysteine (NACL) side groups is prepared. The NACL is used to form strong hydrogen bonds to build a self-healing network. Molecular simulations help explain the reasons and processes for the repair of modified polysiloxanes. On the one hand, the obtained modified polysiloxanes have good self-healing properties. The self-healing efficiency of modified polysiloxane can reach 96.9%. As the number of NACL increases, the tensile strength of the modified polysiloxane increases. For PMVS-30%NACL, the tensile strength can reach 4.36 MPa, and the strain can reach 586%. On the other hand, modified polysiloxane has an apparent inhibitory effect on Staphylococcus aureus. With the increase in the number of NACL, the antibacterial effect of modified polysiloxane is more obvious. Furthermore, NACL is a bio-based amino acid with excellent biocompatibility. This work expands the idea of designing and synthesizing high-strength polysiloxanes with antibacterial properties. It has great potential in the field of polysiloxane antimicrobial coatings.
Assuntos
Aminoácidos , Siloxanas , Siloxanas/química , Ligação de Hidrogênio , Cloreto de Sódio , Antibacterianos/química , AcetilcisteínaRESUMO
BACKGROUND: At present, there is a lack of normal magnetic resonance imaging (MRI) morphometric reference values for fetal internal jugular veins during middle and late pregnancy. OBJECTIVE: We used MRI to assess the morphology and cross-sectional area of the internal jugular veins of fetuses during middle and late pregnancy and to explore the clinical value of these parameters. MATERIALS AND METHODS: The MRI images of 126 fetuses in middle and late pregnancy were retrospectively analysed to determine the optimal sequence for imaging the internal jugular veins. Morphological observation of the fetal internal jugular veins in each gestational week was carried out, lumen cross-sectional area was measured and the relationship between these data and gestational age was analysed. RESULTS: The balanced steady-state free precession sequence was superior to other MRI sequences used for fetal imaging. The cross section of fetal internal jugular veins was predominantly circular in both the middle and late stages of pregnancy, however the prevalence of an oval cross section was significantly higher in the late gestational age group. The cross-sectional area of the lumen of the fetal internal jugular veins increased with increasing gestational age. Fetal jugular vein asymmetry was common, with the right jugular vein being dominant in the high gestational age group. CONCLUSION: We provide normal reference values for fetal internal jugular veins measured by MRI. These values may form the basis for clinical assessment of abnormal dilation or stenosis.
Assuntos
Feto , Veias Jugulares , Feminino , Gravidez , Humanos , Veias Jugulares/anatomia & histologia , Veias Jugulares/patologia , Estudos Retrospectivos , Valores de Referência , Imageamento por Ressonância MagnéticaRESUMO
The SPL (SQUAMOSA-promoter binding protein-like) gene family is one of the largest plant transcription factors and is known to be involved in the regulation of plant growth, development, and stress responses. The genome-wide analysis of SPL gene members in a diverse range of crops has been elucidated. However, none of the genome-wide studies on the SPL gene family have been carried out for oil palm, an important oil-yielding plant. In this research, a total of 24 EgSPL genes were identified via a genome-wide approach. Phylogenetic analysis revealed that most of the EgSPLs are closely related to the Arabidopsis and rice SPL gene members. EgSPL genes were mapped onto the only nine chromosomes of the oil palm genome. Motif analysis revealed conservation of the SBP domain and the occurrence of 1-10 motifs in EgSPL gene members. Gene duplication analysis demonstrated the tandem duplication of SPL members in the oil palm genome. Heatmap analysis indicated the significant expression of SPL genes in shoot and flower organs of oil palm plants. Among the identified EgSPL genes, a total 14 EgSPLs were shown to be targets of miR156. Real-time PCR analysis of 14 SPL genes showed that most of the EgSPL genes were more highly expressed in female and male inflorescences of oil palm plants than in vegetative tissues. Altogether, the present study revealed the significant role of EgSPL genes in inflorescence development.
Assuntos
Arabidopsis , Arecaceae , MicroRNAs , Olea , Filogenia , Arecaceae/genética , Genitália , Produtos Agrícolas , MicroRNAs/genéticaRESUMO
BACKGROUND: Oil palm (Elaeis guineensis, Jacq.) is an important vegetable oil-yielding plant. Somatic embryogenesis is a promising method to produce large-scale elite clones to meet the demand for palm oil. The epigenetic mechanisms such as histone modifications have emerged as critical factors during somatic embryogenesis. These histone modifications are associated with the regulation of various genes controlling somatic embryogenesis. To date, none of the information is available on the histone modification gene (HM) family in oil palm. RESULTS: We reported the identification of 109 HM gene family members including 48 HMTs, 27 HDMs, 13 HATs, and 21 HDACs in the oil palm genome. Gene structural and motif analysis of EgHMs showed varied exon-intron organization and with conserved motifs among them. The identified 109 EgHMs were distributed unevenly across 16 chromosomes and displayed tandem duplication in oil palm genome. Furthermore, relative expression analysis showed the differential expressional pattern of 99 candidate EgHM genes at different stages (non-embryogenic, embryogenic, somatic embryo) of somatic embryogenesis process in oil palm, suggesting the EgHMs play vital roles in somatic embryogenesis. Our study laid a foundation to understand the regulatory roles of several EgHM genes during somatic embryogenesis. CONCLUSIONS: A total of 109 histone modification gene family members were identified in the oil palm genome via genome-wide analysis. The present study provides insightful information regarding HM gene's structure, their distribution, duplication in oil palm genome, and also their evolutionary relationship with other HM gene family members in Arabidopsis and rice. Finally, our study provided an essential role of oil palm HM genes during somatic embryogenesis process.
Assuntos
Arecaceae , Proteínas de Plantas , Arecaceae/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Código das Histonas/genética , Óleo de Palmeira , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de PlantasRESUMO
Phytohormones play an important role in the pollination and fertilization of crops, but the regulatory mechanisms of oil palm pollination and fertilization are unclear. The purpose of this study is to explore the hormonal changes of oil palm pistils during flowering. We used RNA sequencing to evaluate differentially expressed genes (DEGs) in oil palm pistils at the pollination and non-pollination stages. In this study, we found that the hormone contents of oil palm pistil changed drastically after pollination. The transcriptome of the oil palm pistil without pollination and at 2 h, 4 h, 12 h, 24 h, and 48 h after pollination was comprehensively analyzed, and a large number of differential genes and metabolic pathways were explored. Based on the transcriptome data, it could be recognized that the changes of indoleacetic acid (IAA), zeatin riboside (ZR), and abscisic acid (ABA) during pollination were consistent with the changes in the corresponding gene transcripts. Differentially expressed genes during pollination and fertilization of oil palm were mainly related to energy metabolism and hormone signal transduction. It provides new insights to elucidate the interaction and regulation mechanisms of plant hormones before and after oil palm pollination, providing a theoretical basis and reference for the research on sexual reproduction of oil palm.
Assuntos
Reguladores de Crescimento de Plantas , Polinização , Fertilização , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , TranscriptomaRESUMO
The covalent organic framework (COF) shows great potential for use in gas separation because of its uniform and high-density sub-nanometer sized pores. However, most of the COF pore sizes are large, and there are mismatches with the gas pairs (3-6 Å), and the steric hindrance cannot work in gas selectivity. In this work, one type of COF (NUS-2) supported ionic liquid membrane (COF-SILM) was prepared for use in CO2/N2 separation. The separation performance was investigated using molecular dynamics simulation. There was an ultrahigh CO2 permeability up to 2.317 × 106 GPU, and a better CO2 selectivity was obtained when compared to that of N2. The physical mechanism of ultrahigh permeability and CO2 selectivity are discussed in detail. The ultrathin membrane, high-density pores and high transmembrane driving force are responsible for the ultrahigh permeability of CO2. The different adsorption capabilities of ionic liquid (IL) for CO2 and N2, as well as a gating effect, which allows CO2 passage and inhibits N2 passage, contribute to the better CO2 selectivity over N2. Moreover, the effects of the COF layer number and IL thickness on gas separation performance are also discussed. This work provides a molecular level understanding of the gas separation mechanism of COF-SILM, and the simulation results show one potential outstanding CO2 separation membrane for future applications.
RESUMO
KEY MESSAGE: We found that overexpression of EgMYB111 and EgMYB157 genes positively regulate the abiotic stress tolerance. MYB family genes are well-known regulators in modulating the abiotic stress-responsive mechanisms in plants. However, lesser is known about the functional roles of oil palm MYB genes. Previously, we found that oil palm MYB genes such as EgMYB111 and EgMYB157 were significantly up-regulated under salinity, cold, and drought stress conditions. In this study, we over-expressed EgMYB111 and EgMYB157 genes separately in Arabidopsis plants. The transgenic Arabidopsis plants expressing EgMYB111 have shown improved tolerance to salinity, cold and drought stress conditions, whereas transgenic Arabidopsis plants expressing EgMYB157 dispalyed improved tolerance to cold and drought stress conditions only. Various biochemical analyses also revealed significant improvement of antioxidant enzyme activities, photosynthetic pigments, net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration in transgenic plants compared to wild-type plants under cold, drought, and salinity stress conditions. Significant up-regulation of various known stress marker genes such as RD22, RD29A, RAB18, COR47, ABA1, ABI1, HAB1 was also noticed in EgMYB111 and EgMYB157 expressing transgenic plants compared to wild-type plants under cold, drought, and salinity stress conditions. Taken together, over-expression of EgMYB111 and/or EgMYB157 significantly improve abiotic tolerance in transgenic Arabidopsis plants, indicating that EgMYB111 and EgMYB157 are the potential candidates for developing abiotic stress-tolerant crops in near future.
Assuntos
Arabidopsis/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Antioxidantes/metabolismo , Arabidopsis/genética , Arecaceae/genética , Secas , Regulação da Expressão Gênica de Plantas , Fotossíntese , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Salinidade , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismoRESUMO
Oil palm (Elaeis guineensis Jacq.) is an economically important tropical oil crop widely cultivated in tropical zones worldwide. Being a tropical crop, low-temperature stress adversely affects the oil palm. However, integrative leaf transcriptomic and proteomic analyses have not yet been conducted on an oil palm crop under cold stress. In this study, integrative omics transcriptomic and iTRAQ-based proteomic approaches were employed for three oil palm varieties, i.e., B × E (Bamenda × Ekona), O × G (E. oleifera × Elaeis guineensis), and T × E (Tanzania × Ekona), in response to low-temperature stress. In response to low-temperature stress at (8 °C) for 5 days, a total of 5175 up- and 2941 downregulated DEGs in BE-0_VS_BE-5, and a total of 3468 up- and 2443 downregulated DEGs for OG-0_VS_OG-5, and 3667 up- and 2151 downregulated DEGs for TE-0_VS_TE-5 were identified. iTRAQ-based proteomic analysis showed 349 up- and 657 downregulated DEPs for BE-0_VS_BE-5, 372 up- and 264 downregulated DEPs for OG-0_VS_OG-5, and 500 up- and 321 downregulated DEPs for TE-0_VS_TE-5 compared to control samples treated at 28 °C and 8 °C, respectively. The KEGG pathway correlation of oil palm has shown that the metabolic synthesis and biosynthesis of secondary metabolites pathways were significantly enriched in the transcriptome and proteome of the oil palm varieties. The correlation expression pattern revealed that TE-0_VS_TE-5 is highly expressed and BE-0_VS_BE-5 is suppressed in both the transcriptome and proteome in response to low temperature. Furthermore, numerous transcription factors (TFs) were found that may regulate cold acclimation in three oil palm varieties at low temperatures. Moreover, this study identified proteins involved in stresses (abiotic, biotic, oxidative, and heat shock), photosynthesis, and respiration in iTRAQ-based proteomic analysis of three oil palm varieties. The increased abundance of stress-responsive proteins and decreased abundance of photosynthesis-related proteins suggest that the TE variety may become cold-resistant in response to low-temperature stress. This study may provide a basis for understanding the molecular mechanism for the adaptation of oil palm varieties in response to low-temperature stress in China.
Assuntos
Arecaceae , Proteômica , Temperatura Baixa , Arecaceae/genética , Arecaceae/metabolismo , Transcriptoma , Resposta ao Choque Frio/genética , Proteoma/genética , Proteoma/metabolismo , Regulação da Expressão Gênica de Plantas , Óleo de PalmeiraRESUMO
The AP2/ERF transcription factor family members play crucial roles in controlling plant growth and development, as well as responses to various abiotic stresses. Genome-wide identification and characterization of AP2/ERF genes has not yet been carried out in the oil palm genome. In the present work, we reported the occurrence of 172 EgAP2/ERFs (AP2, ERF, RAV & Soloist members) through genome-wide identification. Phylogenetic analysis was used to divide them into four groups, including: 34 AP2, 131 ERF, 5 RAV, and 2 Soloist gene family members. All 172 AP2/ERF members were unevenly distributed across 16 chromosomes of oil palm. Gene duplication analysis elucidated the tandem duplication of AP2/ERFs on chromosome blocks of the oil palm genome during evolution. Gene structure as well as conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the AP2/ERF genes. Several cis-regulatory elements-related to hormone, stress, and defense responses-were identified in the promoter regions of AP2/ERFs. Tissue-specific expression of 172 AP2/ERFs in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Finally, abiotic stress (salinity, cold & drought)-responsive AP2/ERFs in the oil palm genome were validated through qPCR analysis. Our study provided valuable information on oil palm AP2/ERF superfamily members and dissected their role in abiotic stress conditions.
Assuntos
Arecaceae , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Arecaceae/genética , Arecaceae/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited condition affecting multiple endocrine organs, resulting in significant morbidity and decreased life expectancy. Early tumor identification allows for timely patient management, reduces morbidity, and improves disease outcomes. Patients with MEN1 typically present with primary hyperparathyroidism caused by multiple parathyroid tumors, however, thymic and bronchial carcinoid tumors are also less common manifestations. MEN1-related neuroendocrine tumors often show hematogenous metastasis, with the liver being the most common metastatic site. Skeletal metastases from neuroendocrine tumors are extremely rare. As few as 50 case reports were identified in a recently published literature review on skeletal metastases from carcinoid tumors. To our knowledge, studies related to MEN1 have not been previously conducted. CASE PRESENTATION: We present a case of MEN1-related atypical ovarian carcinoid presenting as the first disease manifestation in a 30-year old woman. After two years, another atypical carcinoid was incidentally diagnosed in the contralateral ovary during a caesarean section. Syndromic MEN1 was not diagnosed clinically despite her young age and bilateral involvement. The patient remained disease-free for two years without further adjuvant treatment prior to clinic presentation with complaints of chest discomfort and body pain. Radiologic and pathologic investigations identified multifocal simultaneous neuroendocrine tumors involving the parathyroid, thymus, pancreas, and adrenal glands, in addition to multiple other metastatic sites. The findings ultimately resulted in the patient being diagnosed with MEN1. CONCLUSIONS: This extremely rare case emphasizes that ovarian carcinoids, especially when bilateral, could be the initial manifestation of MEN1. The significance of this differential diagnosis was highlighted by the subsequent detection of widespread skeletal metastasis resulting from the carcinoid tumors. A low threshold of suspicion, systemic diagnostic work-up, and regular follow-up are of utmost importance to timely diagnosis of MEN1.
Assuntos
Tumor Carcinoide/diagnóstico , Diagnóstico Diferencial , Neoplasia Endócrina Múltipla/diagnóstico , Neoplasias Ovarianas/diagnóstico , Adulto , Tumor Carcinoide/diagnóstico por imagem , Tumor Carcinoide/patologia , Feminino , Humanos , Neoplasia Endócrina Múltipla/diagnóstico por imagem , Neoplasia Endócrina Múltipla/patologia , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Ovário/diagnóstico por imagem , Ovário/patologiaRESUMO
BACKGROUND: Gestational diabetes mellitus (GDM) is associated with adverse perinatal outcomes. Screening for GDM and applying adequate interventions may reduce the risk of adverse outcomes. However, the diagnosis of GDM depends largely on tests performed in late second trimester. The aim of the present study was to bulid a simple model to predict GDM in early pregnancy in Chinese women using biochemical markers and machine learning algorithm. METHODS: Data on a total of 4771 pregnant women in early gestation were used to fit the GDM risk-prediction model. Predictive maternal factors were selected through Bayesian adaptive sampling. Selected maternal factors were incorporated into a multivariate Bayesian logistic regression using Markov Chain Monte Carlo simulation. The area under receiver operating characteristic curve (AUC) was used to assess discrimination. RESULTS: The prevalence of GDM was 12.8%. From 8th to 20th week of gestation fasting plasma glucose (FPG) levels decreased slightly and triglyceride (TG) levels increased slightly. These levels were correlated with those of other lipid metabolites. The risk of GDM could be predicted with maternal age, prepregnancy body mass index (BMI), FPG and TG with a predictive accuracy of 0.64 and an AUC of 0.766 (95% CI 0.731, 0.801). CONCLUSIONS: This GDM prediction model is simple and potentially applicable in Chinese women. Further validation is necessary.
Assuntos
Diabetes Gestacional , Programas de Rastreamento/métodos , Primeiro Trimestre da Gravidez/sangue , Medição de Risco/métodos , Adulto , Glicemia/análise , Índice de Massa Corporal , China/epidemiologia , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiologia , Feminino , Teste de Tolerância a Glucose/métodos , Humanos , Idade Materna , Valor Preditivo dos Testes , Gravidez , Prognóstico , Fatores de RiscoRESUMO
BACKGROUND Increasing the success rate of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) is a duty of clinicians that has made many seek a variety of protocols. This study was undertaken to use a liquid chromatography-mass spectrometry (LC-MS) to define the alterations of follicular fluid (FF) lipid metabolites in patients undergoing progestin-primed ovarian stimulation (PPOS) compared with short-term protocol, revealing potential correlations between the differentially expressed lipids and ameliorative clinical outcomes. MATERIAL AND METHODS Ninety-three infertile women undergoing IVF/ICSI treatment with PPOS (n=62) or a short-term protocol (n=31) were prospectively enrolled in a randomized controlled trial. FF samples were obtained from dominant follicles at the time of oocyte retrieval. Lipid metabolism profiles were analyzed using LC-MS. RESULTS Twelve lipids were found to be higher in patients treated with the PPOS protocol than in those receiving the short-term protocol, including triacylglycerols (TAG-34: 1+NH4, TAG-58: 0+NH4, TAG-64: 3+NH4, and TAG-64: 8+NH4), diacylglycerol DAG-38: 6+NH4, phosphatidylglycerols (PG-26: 0, PG-30: 2, and PG-40: 5), phosphatidylethanolamine PE-32: 2, lysophosphatidylethanolamine LPE-14: 1, lysophosphatidylinositol LPI-12: 0, and lysophosphatidylcholine LPC-16: 0. CONCLUSIONS Our data demonstrate that the PPOS protocol increases the levels of 12 lipids in FF, which reveals a strong association between the differentially elevated lipids and better IVF/ICSI outcomes.
Assuntos
Líquido Folicular/metabolismo , Lipídeos/análise , Metaboloma/efeitos dos fármacos , Indução da Ovulação , Progestinas/farmacologia , Adulto , Análise Discriminante , Feminino , Líquido Folicular/efeitos dos fármacos , Humanos , Análise dos Mínimos Quadrados , Reconhecimento Automatizado de Padrão , Progestinas/sangue , Fatores de Tempo , Resultado do TratamentoRESUMO
Although diagnosis and treatment of gastric cancer have improved, the prognosis of patients remains poor. The majority of patients should be treated with chemotherapy or other follow-up treatment. However, the drug resistance of chemotherapy and heterogeneity of tumor itself lead to differences of sensitivity of chemotherapy drugs for different patients. Therefore, it is mandatory to develop better methods of treatment for treatment of gastric cancer. Calycosin has been used in several types of cancer cells. Cisplatin, 5-fluorouracil (5-FU), and adriamycin (ADM) are most widely used drugs for chemotherapy, and they improve the overall survival of cancer patients. To study whether and how calycosin enhances their inhibition of gastric cancer cells, we detected the signaling pathway in which calycosin and cisplatin, 5-FU, and ADM play role in human gastric cells lines. We found that calycosin can enhance the suppression of cisplatin to gastric cell line by inhibiting the phosphorylation of protein kinase B (Akt). So, when cisplatin/5-FU/ADM is combined with calycosin, it can achieve better therapeutic effect in lower concentration.