Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Cell ; 177(6): 1583-1599.e16, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150624

RESUMO

T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Adolescente , Adulto , Autoantígenos/imunologia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/metabolismo , Epitopos/imunologia , Feminino , Células HEK293 , Antígenos HLA-DQ/imunologia , Antígenos HLA-DQ/ultraestrutura , Humanos , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Peptídeos , Ligação Proteica/imunologia
2.
Nature ; 617(7959): 185-193, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100902

RESUMO

The outer membrane structure is common in Gram-negative bacteria, mitochondria and chloroplasts, and contains outer membrane ß-barrel proteins (OMPs) that are essential interchange portals of materials1-3. All known OMPs share the antiparallel ß-strand topology4, implicating a common evolutionary origin and conserved folding mechanism. Models have been proposed for bacterial ß-barrel assembly machinery (BAM) to initiate OMP folding5,6; however, mechanisms by which BAM proceeds to complete OMP assembly remain unclear. Here we report intermediate structures of BAM assembling an OMP substrate, EspP, demonstrating sequential conformational dynamics of BAM during the late stages of OMP assembly, which is further supported by molecular dynamics simulations. Mutagenic in vitro and in vivo assembly assays reveal functional residues of BamA and EspP for barrel hybridization, closure and release. Our work provides novel insights into the common mechanism of OMP assembly.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Dobramento de Proteína , Especificidade por Substrato
3.
Proc Natl Acad Sci U S A ; 120(16): e2214430120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040399

RESUMO

A previously reported autoreactive antigen, termed the X-idiotype, isolated from a unique cell population in Type 1 diabetes (T1D) patients, was found to stimulate their CD4+ T cells. This antigen was previously determined to bind more favorably than insulin and its mimic (insulin superagonist) to HLA-DQ8, supporting its strong role in CD4+ T cell activation. In this work, we probed HLA-X-idiotype-TCR binding and designed enhanced-reactive pHLA-TCR antigens using an in silico mutagenesis approach which we functionally validated by cell proliferation assays and flow cytometry. From a combination of single, double, and swap mutations, we identified antigen-binding sites p4 and p6 as potential mutation sites for HLA binding affinity enhancement. Site p6 is revealed to favor smaller but more hydrophobic residues than the native tyrosine, such as valine (Y6V) and isoleucine (Y6I), indicating a steric mechanism in binding affinity improvement. Meanwhile, site p4 methionine mutation to hydrophobic residues isoleucine (M4I) or leucine (M4L) modestly increases HLA binding affinity. Select p6 mutations to cysteine (Y6C) or isoleucine (Y6I) exhibit favorable TCR binding affinities, while a swap p5-p6 tyrosine-valine double mutant (V5Y_Y6V) and a p6-p7 glutamine-glutamine double mutant (Y6Q_Y7Q) exhibit enhanced HLA binding affinity but weakened TCR affinity. This work holds relevance to potential T1D antigen-based vaccine design and optimization.


Assuntos
Diabetes Mellitus Tipo 1 , Vacinas , Humanos , Autoantígenos , Glutamina , Isoleucina , Insulina , Receptores de Antígenos de Linfócitos T , Mutagênese
4.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833840

RESUMO

For refining and designing protein structures, it is essential to have an efficient protein folding and docking framework that generates a protein 3D structure based on given constraints. In this study, we introduce OPUS-Fold3 as a gradient-based, all-atom protein folding and docking framework, which accurately generates 3D protein structures in compliance with specified constraints, such as a potential function as long as it can be expressed as a function of positions of heavy atoms. Our tests show that, for example, OPUS-Fold3 achieves performance comparable to pyRosetta in backbone folding and significantly better in side-chain modeling. Developed using Python and TensorFlow 2.4, OPUS-Fold3 is user-friendly for any source-code level modifications and can be seamlessly combined with other deep learning models, thus facilitating collaboration between the biology and AI communities. The source code of OPUS-Fold3 can be downloaded from http://github.com/OPUS-MaLab/opus_fold3. It is freely available for academic usage.


Assuntos
Proteínas , Software , Modelos Moleculares , Proteínas/química , Dobramento de Proteína
5.
Nat Chem Biol ; 18(10): 1087-1095, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35879546

RESUMO

Oncogenic Kras-activated pancreatic ductal adenocarcinoma (PDAC) cells highly rely on an unconventional glutamine catabolic pathway to sustain cell growth. However, little is known about how this pathway is regulated. Here we demonstrate that Kras mutation induces cellular O-linked ß-N-acetylglucosamine (O-GlcNAc), a prevalent form of protein glycosylation. Malate dehydrogenase 1 (MDH1), a key enzyme in the glutamine catabolic pathway, is positively regulated by O-GlcNAcylation on serine 189 (S189). Molecular dynamics simulations suggest that S189 glycosylation on monomeric MDH1 enhances the stability of the substrate-binding pocket and strengthens the substrate interactions by serving as a molecular glue. Depletion of O-GlcNAcylation reduces MDH1 activity, impairs glutamine metabolism, sensitizes PDAC cells to oxidative stress, decreases cell proliferation and inhibits tumor growth in nude mice. Furthermore, O-GlcNAcylation levels of MDH1 are elevated in clinical PDAC samples. Our study reveals that O-GlcNAcylation contributes to pancreatic cancer growth by regulating the metabolic activity of MDH1.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Acetilglucosamina/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Glutamina/metabolismo , Malato Desidrogenase/metabolismo , Camundongos , Camundongos Nus , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Serina/metabolismo , Neoplasias Pancreáticas
6.
Proc Natl Acad Sci U S A ; 117(15): 8486-8493, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32234785

RESUMO

Nucleic acid aptamers hold great promise for therapeutic applications due to their favorable intrinsic properties, as well as high-throughput experimental selection techniques. Despite the utility of the systematic evolution of ligands by the exponential enrichment (SELEX) method for aptamer determination, complementary in silico aptamer design is highly sought after to facilitate virtual screening and increased understanding of important nucleic acid-protein interactions. Here, with a combined experimental and theoretical approach, we have developed two optimal epithelial cellular adhesion molecule (EpCAM) aptamers. Our structure-based in silico method first predicts their binding modes and then optimizes them for EpCAM with molecular dynamics simulations, docking, and free energy calculations. Our isothermal titration calorimetry experiments further confirm that the EpCAM aptamers indeed exhibit enhanced affinity over a previously patented nanomolar aptamer, EP23. Moreover, our study suggests that EP23 and the de novo designed aptamers primarily bind to EpCAM dimers (and not monomers, as hypothesized in previous published works), suggesting a paradigm for developing EpCAM-targeted therapies.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Molécula de Adesão da Célula Epitelial/química , Molécula de Adesão da Célula Epitelial/metabolismo , Magnésio/metabolismo , Calorimetria , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Multimerização Proteica , Técnica de Seleção de Aptâmeros
7.
Bioconjug Chem ; 33(11): 2132-2142, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36332151

RESUMO

Active transcytosis has recently sparked great interest in drug delivery as a novel route for tumor extravasation and infiltration. However, the rational design of transcytosis-inducing nanomedicines remains challenging. We recently demonstrated that the γ-glutamyl transpeptidase (GGT)-responsive polymer cationization induced efficient adsorption-mediated transcytosis (AMT). However, it remains unclear how the nanomedicines' physicochemical properties influence the GGT-responsive cationization and induced transcytosis behaviors. Herein, through a combination of experimental techniques and molecular dynamics (MD) simulations, we find that the random copolymers with high hydrophobic monomers tend to form compact structures accessible to the catalytic site of GGT, leading to a fast cationization and thus high transcytosis efficiency, while the homopolymers of the hydrophilic GGT-sensitive monomers have elongated structures unable to enter the active site and thus exhibit poor GGT sensitivity. As a result, the more hydrophobic polymer-drug conjugates with high camptothecin contents exhibit higher GGT-responsive activity, which in turn leads to faster cationization and cellular internalization, enhanced tumor infiltration, and more potent antitumor activity. These findings indicate the hydrophobicity is a main parameter determining the GGT catalytic activity and transcytosis efficiency of the GGT-activatable co(homo)polymers, providing guidelines for the rational design of GGT-induced charge reversal carriers for transcytotic nanomedicines.


Assuntos
Neoplasias , gama-Glutamiltransferase , Humanos , gama-Glutamiltransferase/metabolismo , Polímeros , Transcitose , Interações Hidrofóbicas e Hidrofílicas
8.
J Nanobiotechnology ; 20(1): 191, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428303

RESUMO

BACKGROUND: Nanoplastics have been recently found widely distributed in our natural environment where ubiquitously bacteria are major participants in various material cycles. Understanding how nanoplastics interact with bacterial cell membrane is critical to grasp their uptake processes as well as to analyze their associated risks in ecosystems and human microflora. However, little is known about the detailed interaction of differentially charged nanoplastics with bacteria. The present work experimentally and theoretically demonstrated that nanoplastics enter into bacteria depending on the surface charges and cell envelope structural features, and proved the shielding role of membrane lipids against nanoplastics. RESULTS: Positively charged polystyrene nanoplastics (PS-NH2, 80 nm) can efficiently translocate across cell membranes, while negatively charged PS (PS-COOH) and neutral PS show almost no or much less efficacy in translocation. Molecular dynamics simulations revealed that the PS-NH2 displayed more favourable electrostatic interactions with bacterial membranes and was subjected to internalisation through membrane penetration. The positively charged nanoplastics destroy cell envelope of Gram-positive B. subtilis by forming membrane pore, while enter into the Gram-negative E. coli with a relatively intact envelope. The accumulated positively charged nanoplastics conveyed more cell stress by inducing a higher level of reactive oxygen species (ROS). However, the subsequently released membrane lipid-coated nanoplastics were nearly nontoxic to cells, and like wise, stealthy bacteria wrapped up with artifical lipid layers became less sensitive to the positively charged nanoplastics, thereby illustrating that the membrane lipid can shield the strong interaction between the positively charged nanoplastics and cells. CONCLUSIONS: Our findings elucidated the molecular mechanism of nanoplastics' interaction and accumulation within bacteria, and implied the shielding and internalization effect of membrane lipid on toxic nanoplastics could promote bacteria for potential plastic bioremediation.


Assuntos
Microplásticos , Nanopartículas , Ecossistema , Escherichia coli , Humanos , Lipídeos de Membrana , Nanopartículas/química , Poliestirenos/química
9.
BMC Bioinformatics ; 22(1): 338, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157976

RESUMO

BACKGROUND: Drug discovery is a multi-stage process that comprises two costly major steps: pre-clinical research and clinical trials. Among its stages, lead optimization easily consumes more than half of the pre-clinical budget. We propose a combined machine learning and molecular modeling approach that partially automates lead optimization workflow in silico, providing suggestions for modification hot spots. RESULTS: The initial data collection is achieved with physics-based molecular dynamics simulation. Contact matrices are calculated as the preliminary features extracted from the simulations. To take advantage of the temporal information from the simulations, we enhanced contact matrices data with temporal dynamism representation, which are then modeled with unsupervised convolutional variational autoencoder (CVAE). Finally, conventional and CVAE-based clustering methods are compared with metrics to rank the submolecular structures and propose potential candidates for lead optimization. CONCLUSION: With no need for extensive structure-activity data, our method provides new hints for drug modification hotspots which can be used to improve drug potency and reduce the lead optimization time. It can potentially become a valuable tool for medicinal chemists.


Assuntos
Aprendizado de Máquina , Simulação de Dinâmica Molecular , Análise por Conglomerados , Descoberta de Drogas
10.
Part Fibre Toxicol ; 18(1): 17, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902647

RESUMO

BACKGROUND: Disruption of microbiota balance may result in severe diseases in animals and phytotoxicity in plants. While substantial concerns have been raised on engineered nanomaterial (ENM) induced hazard effects (e.g., lung inflammation), exploration of the impacts of ENMs on microbiota balance holds great implications. RESULTS: This study found that rare earth oxide nanoparticles (REOs) among 19 ENMs showed severe toxicity in Gram-negative (G-) bacteria, but negligible effects in Gram-positive (G+) bacteria. This distinct cytotoxicity was disclosed to associate with the different molecular initiating events of REOs in G- and G+ strains. La2O3 as a representative REOs was demonstrated to transform into LaPO4 on G- cell membranes and induce 8.3% dephosphorylation of phospholipids. Molecular dynamics simulations revealed the dephosphorylation induced more than 2-fold increments of phospholipid diffusion constant and an unordered configuration in membranes, eliciting the increments of membrane fluidity and permeability. Notably, the ratios of G-/G+ reduced from 1.56 to 1.10 in bronchoalveolar lavage fluid from the mice with La2O3 exposure. Finally, we demonstrated that both IL-6 and neutrophil cells showed strong correlations with G-/G+ ratios, evidenced by their correlation coefficients with 0.83 and 0.92, respectively. CONCLUSIONS: This study deciphered the distinct toxic mechanisms of La2O3 as a representative REO in G- and G+ bacteria and disclosed that La2O3-induced membrane damages of G- cells cumulated into pulmonary microbiota imbalance exhibiting synergistic pulmonary toxicity. Overall, these findings offered new insights to understand the hazard effects induced by REOs.


Assuntos
Metais Terras Raras , Microbiota , Nanopartículas , Animais , Biotransformação , Camundongos , Óxidos
11.
Proc Natl Acad Sci U S A ; 115(8): 1877-1882, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29437954

RESUMO

HIV controllers (HCs) are individuals who can naturally control HIV infection, partially due to potent HIV-specific CD8+ T cell responses. Here, we examined the hypothesis that superior function of CD8+ T cells from HCs is encoded by their T cell receptors (TCRs). We compared the functional properties of immunodominant HIV-specific TCRs obtained from HLA-B*2705 HCs and chronic progressors (CPs) following expression in primary T cells. T cells transduced with TCRs from HCs and CPs showed equivalent induction of epitope-specific cytotoxicity, cytokine secretion, and antigen-binding properties. Transduced T cells comparably, albeit modestly, also suppressed HIV infection in vitro and in humanized mice. We also performed extensive molecular dynamics simulations that provided a structural basis for similarities in cytotoxicity and epitope cross-reactivity. These results demonstrate that the differential abilities of HIV-specific CD8+ T cells from HCs and CPs are not genetically encoded in the TCRs alone and must depend on additional factors.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Epitopos de Linfócito T/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Receptores de Antígenos de Linfócitos T/genética , Clonagem Molecular , Regulação da Expressão Gênica/imunologia , Células HEK293 , Antígeno HLA-B27 , Humanos , Células Jurkat
12.
Chem Soc Rev ; 49(15): 5473-5509, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632432

RESUMO

Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-ß architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloidose , Cátions Bivalentes/química , Reagentes de Ligações Cruzadas/química , Humanos , Modelos Moleculares , Conformação Molecular , Impressão Tridimensional , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
13.
Angew Chem Int Ed Engl ; 60(3): 1281-1289, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33009693

RESUMO

In this study, we established a feasible strategy to construct a new type of metallo-polymer with helicoidal structure through the combination of covalent polymerization and intramolecular coordination-driven self-assembly. In the design, a tetratopic monomer (M) was prepared with two terminal alkynes in the outer rim for polymerization, and two terpyridines (TPYs) in the inner rim for subsequent folding by selective intramolecular coordination. Then, the linear covalent polymer (P) was synthesized by polymerization of M via Glaser-Hay homocoupling reaction. Finally, intramolecular coordination interactions between TPYs and Zn(II) folded the backbone of P into a right- or left-handed metallo-helicoid (H) with double rims. Owing to multiple positive charges on the inner rim of helicoid, double-stranded DNA molecules (dsDNA) could interact with H through electrostatic interactions. Remarkably, dsDNA allowed exclusive formation of H with right handedness by means of chiral induction.

14.
J Am Chem Soc ; 142(20): 9169-9174, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32363870

RESUMO

Crystalline porous materials such as covalent organic frameworks (COFs) are advanced materials to tackle challenges of catalysis and separation in industrial processes. Their synthetic routes often require elevated temperatures, closed systems with high pressure, and long reaction times, hampering their industrial applications. Here we use a traditionally unperceived strategy to assemble highly crystalline COFs by electron beam irradiation with controlled received dosage, contrasting sharply with the previous observation that radiation damages the crystallinity of solids. Such synthesis by electron beam irradiation can be achieved under ambient conditions within minutes, and the process is amendable for large-scale production. The intense and targeted energy input to the reactants leads to new reaction pathways that favor COF formation in nearly quantitative yield. This strategy is applicable not only to known COFs but also to new series of flexible COFs that are difficult to obtain using traditional methods.

15.
Inorg Chem ; 59(6): 3606-3618, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32114758

RESUMO

The open-shell single covalent bond composed of two electrons is unstable under normal conditions, because the closed-shell electronic configuration is generally beneficial to minimize the energy of the system. This classical rule always governs the chemical bonding of s- and p-block homonuclear diatomic molecules, such as the stable σ2 electron-pair bonds in hydrogen. In this work, surprisingly, we found that the diversified open-shell single bonds between two f-block atoms (e.g., thorium) can be stabilized within a tight "carbon-confined-space" using relativistic quantum chemical calculations. We first identified a stable dithorium endohedral metallofullerene (EMF), Th26+@Ih-C806-, with a Th-Th distance of 3.803 Å inside the Ih-C80 cage, which displays a unique spin-polarized σ1π1 2-fold single-electron Th3+-Th3+ bond that is collaboratively dominated by 5f6d7s7p orbitals. The Th3+-Th3+ bond can further evolve into a 5f6d dominated spin-polarized π2 configuration by compressing the Th-Th distance further down to 2.843 Å, within a smaller Ih-C60 cage. On the other hand, elongating the Th-Th distance to 4.063 Å by encapsulating Th2 into a long diametric D3h-C78 fullerene returns the Th3+-Th3+ bond to the normal closed-shell (6d7s7p)σ2 form. Hence, a new rule is unambiguously revealed through the carbon-confinement induced spin-polarization of a single bond. The key point of this rule is the size of the carbon cage, because the squeezed effect is conducive to the effective overlap of the Th(5f) orbitals, reducing and further reversing the original large singlet-triplet energy gap of the Th26+ unit. This discovery provides pioneering guidance for exploring new chemical bonds and thorium-based endofullerenes.

16.
Nano Lett ; 19(2): 977-982, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30628792

RESUMO

Nanofluidic diodes based on nanochannels have been studied theoretically and experimentally for applications such as biosensors and logic gates. However, when analyzing attoliter-scale samples or enabling high-density integration of lab-on-a-chip devices, it is beneficial to miniaturize the size of a nanofluidic channel. Using molecular dynamics simulations, we investigate conductance of nanopores in bilayer hexagonal boron nitride (h-BN). Remarkably, we found that triangular nanopores possess excellent rectifications of ionic currents while hexagonal ones do not. It is worth highlighting that the pore length is only about 0.7 nm, which is about the atomic limit for a bipolar diode. We determined scaling relations between ionic currents I and pore sizes L for small nanopores, that are I ∼ L1 in a forward biasing voltage and I ∼ L2 in a reverse biasing voltage. Simulation results qualitatively agree with analytical ones derived from the one-dimensional Poisson-Nerst-Planck equations.

17.
Angew Chem Int Ed Engl ; 59(35): 15209-15214, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32432349

RESUMO

Radio-photoluminescence (RPL) materials display a distinct radiation-induced permanent luminescence center, and therefore find application in the detection of ionizing radiation. The current inventory of RPL materials, which were discovered by serendipity, has been limited to a small number of metal-ion-doped inorganic materials. Here we document the RPL of a metal-organic framework (MOF) for the first time: X-ray induced free radicals are accumulated on the organic linker and are subsequently stabilized in the conjugated fragment in the structure, while the metal center acts as the X-ray attenuator. These radicals afford new emission features in both UV-excited and X-ray excited luminescence spectra, making it possible to establish linear relationships between the radiation dose and the normalized intensity of the new emission feature. The MOF-based RPL materials exhibit advantages in terms of the dose detection range, reusability, emission stability, and energy threshold. Based on a comprehensive electronic structure and energy diagram study, the rational design and a substantial expansion of candidate RPL materials can be anticipated.

18.
Biophys J ; 116(10): 1907-1917, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31060814

RESUMO

Improving the stability of antibodies for manufacture and shelf life is one of the main focuses of antibody engineering. One stabilization strategy is to perform specific mutations in human antibodies based on highly stable antibodies in other species. To identify the key residues for mutagenesis, it is necessary to understand the roles of these residues in stabilizing the antibody. Here, we use molecular dynamics simulations to study the molecular origin of the four shark immunoglobulin new antigen receptors constant domains (C1-C4). According to the unfolding pathways and the conformational free energy surfaces in 8 M urea at 380 K, the C2 domain is the most stable, followed by C4, C1, and C3, which agrees with the experimental findings. The C1 and C3 domains follow a common unfolding pathway in which the unfolding starts from the edge strands, particularly strand g, and then gradually progresses to the inner strands. Detailed structural analysis of the C2 domain reveals a "sandwich-like" R339-E322-R341 salt-bridge cluster on strand g, which grants ultrahigh stability to the C2 domain. We further design two sets of mutations by mutating E322 to alanine or setting all atomic charges in E322 to zero to break the salt-bridge cluster in the C2 domain, which confirms the importance of the salt bridges in stability. In the C4 domain, the D80-K104 salt bridge on strand g also strengthens the stability. On the other hand, in the C1 and C3 domains, there is no salt bridge on strand g. In addition to the salt bridges, the overall hydrophobicity score of the hydrophobic core is also positively correlated with the domain stability. Our findings provide a detailed microscopic picture of the molecular origin of the four shark immunoglobulin new antigen receptors constant domains that not only explains the differences in their structural stability but also provides important insights into future antibody design.


Assuntos
Imunoglobulinas/química , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Imunoglobulinas/genética , Mutação , Domínios Proteicos , Estabilidade Proteica
19.
J Am Chem Soc ; 141(16): 6545-6552, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30924644

RESUMO

Despite accelerating development of CRISPR technology, there remains high demand for further interrogation of its fundamental biology. This is particularly fascinating as new improved CRISPR tools were artificially engineered to harbor beneficial features but often lack mechanistic explanation. SaCas9, a minimal Cas9 ideal for in vivo applications, suffers from long protospacer adjacent motif (PAM), which prompted effort on mutant KKH SaCas9 with relaxed PAM requirement. Leveraging structure-based molecular dynamics simulation, free-energy perturbation, and targeted experimentation, we developed a workflow for probing SaCas9 and a series of its variants, revealing intriguing dynamics of PAM recognition and the molecular mechanism of KKH mutations. Furthermore, we deployed this approach to design and validate new mutant SaCas9, SaCas9-NR and SaCas9-RL, with enhanced targeting range distinctive from the KKH mutant and improved activity in mammalian cells. Overall, our approach provides a dynamic understanding of SaCas9 PAM recognition and a new gateway to enlighten rationally designed Cas9 variants harboring novel properties.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , DNA/genética , Simulação de Dinâmica Molecular , Staphylococcus aureus/enzimologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Mutação , Conformação Proteica , Engenharia de Proteínas
20.
Chem Res Toxicol ; 32(7): 1357-1366, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31251039

RESUMO

Antibacterial agents are an important tool in the prevention of bacterial infections. Inorganic materials are attractive due to their high stability under a variety of conditions compared to organic antibacterial agents. Herein tungsten oxide nanodots (WO3-x), synthesized by a simple one-pot synthetic approach, were found to exhibit strong antibacterial capabilities. The analyses with colony-forming units (CFU) showed an excellent antibacterial activity of WO3-x against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) strains. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed clear damages to the bacterial cell membranes, which was further confirmed by molecular dynamics simulations. Additionally, exposure to simulated sunlight was found to further increase the germicidal activity of WO3-x nanodots, a 30 min exposure to sunlight combined with 50 µg/mL WO3-x nanodots showed a 70% decrease in E. coli viability compared to without exposure. Electron spin resonance spectroscopy (ESR) was used to elucidate the underlying mechanism of this photocatalytic activity through the generation of hydroxyl radical species. The cell counting kit-8 (CCK-8) and the live/dead assay were further employed to evaluate the cytotoxicity of WO3-x nanodots on eukaryotic cells, which demonstrated their general biocompatibility. In summary, our results suggest WO3-x nanodots have considerable potential in antibacterial applications, while also being biocompatible at large.


Assuntos
Antibacterianos/farmacologia , Óxidos/farmacologia , Pontos Quânticos/química , Tungstênio/farmacologia , Antibacterianos/síntese química , Antibacterianos/toxicidade , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Humanos , Testes de Sensibilidade Microbiana , Óxidos/síntese química , Óxidos/toxicidade , Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Tungstênio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA