Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050483

RESUMO

Engine prognostics are critical to improve safety, reliability, and operational efficiency of an aircraft. With the development in sensor technology, multiple sensors are embedded or deployed to monitor the health condition of the aircraft engine. Thus, the challenge of engine prognostics lies in how to model and predict future health by appropriate utilization of these sensor information. In this paper, a prognostic approach is developed based on informative sensor selection and adaptive degradation modeling with functional data analysis. The presented approach selects sensors based on metrics and constructs health index to characterize engine degradation by fusing the selected informative sensors. Next, the engine degradation is adaptively modeled with the functional principal component analysis (FPCA) method and future health is prognosticated using the Bayesian inference. The prognostic approach is applied to run-to-failure data sets of C-MAPSS test-bed developed by NASA. Results show that the proposed method can effectively select the informative sensors and accurately predict the complex degradation of the aircraft engine.

2.
Opt Express ; 27(23): 33869-33879, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878446

RESUMO

Circular dichroism (CD) is useful in polarization conversion, negative refraction chemical analysis, and bio-sensing. To achieve strong CD signals, researchers constantly break the symmetry of nanostructures. However, how to further enhance the CD based on a new mechanism has become a new challenge in this field. In this work, a hybrid plasmonic chiral system composed of an array of graphene ribbons (GRs) over h-shaped sliver chiral nanostructures (HSCNs) is theoretically investigated. Results demonstrate that the plasmonic coupling between HSCNs and GRs results in different enhanced absorptions for different circularly polarized lights. The absorbance of right circularly polarized light is enhanced to perfect absorption; the absorption of left circularly polarized light is enhanced weakly. It leads to the CD effect of HSCNs@GRs approaching 88%. The loss distributions of HSCNs and HSCNs@GRs reveal that the absorption is enhanced and transferred from HSCNs to GRs. Moreover, the current distributions of HSCNs@GRs are simplified to equivalent LC resonant circuits, which can qualitatively explain the change of CD signals by tuning geometrical parameters of HSCNs@GRs. The findings of this work provide a new method of enhancing chirality and benefit the design of graphene-based chiral optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA