RESUMO
Photonic integrated circuits with compact design have opened possibilities for the development of optical computing systems; however, the overuse of photonic components in optical designs has slowed the progress of dense integration. In this paper, we propose an ultra-compact optical full-adder based on directed logic and microring resonators. To the best of our knowledge, the proposed structure requires fewer optical components than any other current designs, resulting in a significantly reduced footprint 59.2µm×29.2µm. Also, the proposed structure exhibits a maximum delay time of approximately 10 ps, implying a minimum date rate of 100 GHz. Simulation results by finite-difference time-domain (FDTD) demonstrate the effectiveness and feasibility of the proposed optical full-adder.
RESUMO
Metalenses are developing fast towards versatile and integrated terahertz (THz) apparatuses, while tunable ones are highly pursued. Here, we propose a strategy that integrates dielectric metasurfaces with liquid crystals (LCs) to realize the dynamic focal spot manipulation. The silicon pillar meta-units of the metasurface are properly selected to generate different phase profiles for two orthogonal linear polarizations, permitting a laterally or axially altered focal spot. After LCs integrated, polarization-multiplexed focusing can be achieved via electrically varying the LC orientations. We demonstrate two metalenses with distinct functions. For the first one, the uniformly aligned LC works as a polarization converter, and further switches the focal length by altering the bias. For the second one, an LC polarization grating is utilized for rear spin-selective beam deflection. Consequently, a THz port selector is presented. This work supplies a promising method towards active THz elements, which may be widely applied in THz sensing, imaging, and communication.
RESUMO
We propose and demonstrate an active spin-selected lens with liquid crystal (LC) in the terahertz (THz) range. The lens is a superposition of two geometric phase lenses with separate centers and conjugated phase profiles. Its digitalized multidirectional LC orientations are realized via a dynamic micro-lithography-based photo-patterning technique and sandwiched by two graphene-electrode-covered silica substrates. The specific lens can separate the focusing spots of incident light with opposite circular polarizations. Its focusing performance from 0.8 to 1.2 THz is characterized using a scanning near-field THz microscope system. The polarization conversion efficiency varies from 32.1% to 70.2% in this band. The spin-selected focusing functions match well with numerical simulations. Such lens exhibits the merit of dynamic functions, low insertion loss and broadband applicability. It may inspire various practical THz apparatuses.
RESUMO
Active terahertz elements with multifunction are highly expected in security screening, nondestructive evaluation, and wireless communications. Here, we propose an innovative terahertz metadevice that exhibits distinguishing functions for transmitted and reflected waves. The device is composed of a thin liquid crystal layer sandwiched by Au comb electrodes and a dual-ring resonator array. For transmission mode, the metadevice manifests the electromagnetically induced transparency analog. For reflection mode, it works as a perfect absorber. The comb electrodes actuate the in-plane switching of liquid crystals, making the metadevice actively tuned. 60 GHz frequency tuning of an electromagnetically induced transparency analog and 15% modulation depth of the absorption are demonstrated. Such modulations can be realized in the millisecond scale. The in-plane switching driving mode avoids the electrode connections among separate resonators, thus freeing the design of the metadevice. The proposed work may pave a bright road towards various active multifunctional terahertz apparatuses.