Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513102

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Assuntos
Processamento Alternativo , Benzopiranos , Receptor beta de Estrogênio , Estruturas R-Loop , Fator de Processamento U2AF , Neoplasias de Mama Triplo Negativas , Humanos , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Fator de Processamento U2AF/química , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Terapia Combinada , Células MDA-MB-231 , Processamento Alternativo/efeitos dos fármacos , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Ligação Proteica , Sítios de Ligação
2.
Semin Cancer Biol ; 96: 82-99, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783319

RESUMO

As data-driven science, artificial intelligence (AI) has paved a promising path toward an evolving health system teeming with thrilling opportunities for precision oncology. Notwithstanding the tremendous success of oncological AI in such fields as lung carcinoma, breast tumor and brain malignancy, less attention has been devoted to investigating the influence of AI on gynecologic oncology. Hereby, this review sheds light on the ever-increasing contribution of state-of-the-art AI techniques to the refined risk stratification and whole-course management of patients with gynecologic tumors, in particular, cervical, ovarian and endometrial cancer, centering on information and features extracted from clinical data (electronic health records), cancer imaging including radiological imaging, colposcopic images, cytological and histopathological digital images, and molecular profiling (genomics, transcriptomics, metabolomics and so forth). However, there are still noteworthy challenges beyond performance validation. Thus, this work further describes the limitations and challenges faced in the real-word implementation of AI models, as well as potential solutions to address these issues.


Assuntos
Neoplasias Encefálicas , Neoplasias dos Genitais Femininos , Humanos , Feminino , Neoplasias dos Genitais Femininos/diagnóstico , Neoplasias dos Genitais Femininos/genética , Neoplasias dos Genitais Femininos/terapia , Inteligência Artificial , Medicina de Precisão , Medição de Risco
3.
Mass Spectrom Rev ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37051664

RESUMO

Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.

4.
Lancet Oncol ; 24(6): 701-708, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37269846

RESUMO

BACKGROUND: Small cell carcinoma of the cervix is a rare but poor prognosis pathological type of cervical cancer, for which advice in clinical guidelines is unspecific. We therefore aimed to investigate the factors and treatment methods that affect the prognosis of patients with small cell carcinoma of the cervix. METHODS: In this retrospective study, we collected data from the Surveillance, Epidemiology, and End Results (SEER) 18 registries cohort and a Chinese multi-institutional registry. The SEER cohort included females diagnosed with small cell carcinoma of the cervix between Jan 1, 2000, and Dec 31, 2018, whereas the Chinese cohort included women diagnosed between Jun 1, 2006, and April 30, 2022. In both cohorts, eligibility was limited to female patients older than 20 years with a confirmed diagnosis of small cell carcinoma of the cervix. Participants who were lost to follow-up or those for whom small cell carcinoma of the cervix was not the primary malignant tumour were excluded from the multi-institutional registry, and those with an unknown surgery status (in addition to those for whom small cell carcinoma of the cervix was not the primary malignant tumour) were excluded from the SEER data. The primary outcome of this study was overall survival (length of time from the date of first diagnosis until the date of death from any cause, or the last follow-up). Kaplan-Meier analysis, propensity score matching, and Cox-regression analyses were used to assess treatment outcomes and risk factors. FINDINGS: 1288 participants were included in the study; 610 in the SEER cohort and 678 in the Chinese cohort. Both univariable and multivariable Cox regression analysis (SEER hazard ratio [HR] 0·65 [95% CI 0·48-0·88], p=0·0058; China HR 0·53 [0·37-0·76], p=0·0005) showed that surgery was associated with a better prognosis. In subgroup analyses, surgery remained a protective factor for patients with locally advanced disease in both cohorts (SEER HR 0·61 [95% CI 0·39-0·94], p=0·024; China HR 0·59 [0·37-0·95]; p=0·029). Furthermore, the protective effect of surgery was observed among patients with locally advanced disease after propensity score matching in the SEER cohort (HR 0·52 [95% CI 0·32-0·84]; p=0·0077). In the China registry, surgery was associated with better outcomes in patients with stage IB3-IIA2 cancer (HR 0·17 [95% CI 0·05-0·50]; p=0·0015). INTERPRETATION: This study provides evidence that surgery improves outcomes of patients with small cell carcinoma of the cervix. Although guidelines recommend non-surgical methods as first-line treatment, patients with locally advanced disease or stage IB3-IIA2 cancer might benefit from surgery. FUNDING: The National Key R&D Program of China and the National Natural Science Foundation of China.


Assuntos
Carcinoma de Células Pequenas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Pequenas/epidemiologia , Carcinoma de Células Pequenas/terapia , Carcinoma de Células Pequenas/patologia , População do Leste Asiático , Estadiamento de Neoplasias , Prognóstico , Sistema de Registros , Estudos Retrospectivos , Programa de SEER , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapia
5.
Trends Biochem Sci ; 44(5): 401-414, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30679131

RESUMO

Metabolic alterations and elevated levels of reactive oxygen species (ROS) are two characteristics of cancer. The metabolic patterns of cancer cells are elaborately reprogrammed to fulfill the high biomass demands of rapid propagation. ROS, the byproducts of metabolic processes, are accumulated in cancer cells partially due to metabolic abnormalities or oncogenic mutations. To prevent oxidative damage, cancer cells can orchestrate metabolic adaptation to maintain reduction-oxidation (redox) balance by producing reducing equivalents. ROS, acting as second messengers, can in turn manipulate metabolic pathways by directly or indirectly affecting the function of metabolic enzymes. In this review we discuss how cancer cell metabolism and redox signaling are intertwined, with an emphasis on the perspective of targeting metabolic-redox circuits for cancer therapy.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Neoplasias/patologia , Oxirredução
6.
Trends Immunol ; 41(2): 172-185, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31982345

RESUMO

Members of the nuclear receptor (NR) superfamily orchestrate cellular processes that can impact on numerous cancer hallmarks. NR activity plays important roles in the tumor microenvironment by controlling inflammation and immune responses. We summarize recent insights into the diverse mechanisms by which NR activity can control tumor inflammation, the roles of different NRs in modulating tumor immunity, and the biological features of immune cells that express specific NRs in the context of cancer. NR-dependent alterations in tumor inflammation and immunity may be amenable to pharmacological manipulation and offer new clues regarding the development of novel cancer therapeutic regimens.


Assuntos
Neoplasias , Receptores Citoplasmáticos e Nucleares , Humanos , Inflamação/imunologia , Neoplasias/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Transdução de Sinais , Microambiente Tumoral/imunologia
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 497-504, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248574

RESUMO

Metabolic reprogramming, an important hallmark of cancer, helps cancer achieve rapid proliferation. Metabolic changes in tumors regulate multiple metabolic pathways of immune cells, thereby suppressing antitumor immunity. Recent studies have been focused on in-depth investigation into the changes in the metabolism of glucose, amino acids, and lipids. Researchers have also conducted in-depth exploration of the interactive metabolic regulation of tumor cells and immune cells. Targeting various metabolic mechanisms while combining available anti-tumor therapies and enhancing the anti-tumor effects of immunotherapy by satisfying the metabolic demands of immune cells has offered new perspectives for therapies targeting the immune metabolism of tumors and enhancing anti-tumor immune responses. Studies on novel immune checkpoint molecules and cellular immunotherapies are also ongoing. Herein, we reviewed the latest findings on the mechanisms of immune metabolism underlying tumor immunosuppression and their application in immunotherapy. We also suggested some ideas for the future development of the regulation of immune metabolism.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
8.
Mol Cancer ; 21(1): 30, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081965

RESUMO

Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , RNA não Traduzido/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Terapia Combinada , Gerenciamento Clínico , Progressão da Doença , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
9.
Mol Cancer ; 21(1): 27, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062950

RESUMO

Cellular metabolism constitutes a fundamental process in biology. During tumor initiation and progression, each cellular component in the cancerous niche undergoes dramatic metabolic reprogramming, adapting to a challenging microenvironment of hypoxia, nutrient deprivation, and other stresses. While the metabolic hallmarks of cancer have been extensively studied, the metabolic states of the immune cells are less well elucidated. Here we review the metabolic disturbance and fitness of the immune system in the tumor microenvironment (TME), focusing on the impact of oncometabolites to the function of immune cells and the clinical significance of targeting metabolism in anti-tumor immunotherapy. Metabolic alterations in the immune system of TME offer novel therapeutic insight into cancer treatment.


Assuntos
Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Neoplasias/etiologia , Neoplasias/metabolismo , Microambiente Tumoral/imunologia , Adaptação Biológica , Animais , Transformação Celular Neoplásica/genética , Reprogramação Celular , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Imunoterapia , Neoplasias/diagnóstico , Neoplasias/terapia , Resultado do Tratamento
10.
Mass Spectrom Rev ; 39(5-6): 745-762, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32469100

RESUMO

Exosomes are critical intercellular messengers released upon the fusion of multivesicular bodies with the cellular plasma membrane that deliver their cargo in the form of extracellular vesicles. Containing numerous nonrandomly packed functional proteins, lipids, and RNAs, exosomes are vital intercellular messengers that contribute to the physiologic processes of the healthy organism. During the post-genome era, exosome-oriented proteomics have garnered great interest. Since its establishment, mass spectrometry (MS) has been indispensable for the field of proteomics research and has advanced rapidly to interrogate biological samples at a higher resolution and sensitivity. Driven by new methodologies and more advanced instrumentation, MS-based approaches have revolutionized our understanding of protein biology. As the access to online proteomics database platforms has blossomed, experimental data processing occurs with more speed and accuracy. Here, we review recent advances in the technological progress of MS-based proteomics and several new detection strategies for MS-based proteomics research. We also summarize the use of integrated online databases for proteomics research in the era of big data. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Assuntos
Biomarcadores/análise , Exossomos/fisiologia , Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Exossomos/química , Vesículas Extracelulares , Humanos , Microfluídica/métodos , Ultracentrifugação/métodos
11.
Proc Natl Acad Sci U S A ; 115(16): E3673-E3681, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29592953

RESUMO

Metastases constitute the greatest causes of deaths from cancer. However, no effective therapeutic options currently exist for cancer patients with metastasis. Estrogen receptor ß (ERß), as a member of the nuclear receptor superfamily, shows potent tumor-suppressive activities in many cancers. To investigate whether modulation of ERß could serve as a therapeutic strategy for cancer metastasis, we examined whether the selective ERß agonist LY500307 could suppress lung metastasis of triple-negative breast cancer (TNBC) and melanoma. Mechanistically, while we observed that LY500307 potently induced cell death of cancer cells metastasized to lung in vivo, it does not mediate apoptosis of cancer cells in vitro, indicating that the cell death-inducing effects of LY500307 might be mediated by the tumor microenvironment. Pathological examination combined with flow cytometry assays indicated that LY500307 treatment induced significant infiltration of neutrophils in the metastatic niche. Functional experiments demonstrated that LY500307-treated cancer cells show chemotactic effects for neutrophils and that in vivo neutrophil depletion by Ly6G antibody administration could reverse the effects of LY500307-mediated metastasis suppression. RNA sequencing analysis showed that LY500307 could induce up-regulation of IL-1ß in TNBC and melanoma cells, which further triggered antitumor neutrophil chemotaxis. However, the therapeutic effects of LY500307 treatment for suppression of lung metastasis was attenuated in IL1B-/- murine models, due to failure to induce antitumor neutrophil infiltration in the metastatic niche. Collectively, our study demonstrated that pharmacological activation of ERß could augment innate immunity to suppress cancer metastatic colonization to lung, thus providing alternative therapeutic options for cancer patients with metastasis.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Receptor beta de Estrogênio/agonistas , Imunidade Inata/efeitos dos fármacos , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Melanoma Experimental/secundário , Infiltração de Neutrófilos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzopiranos/uso terapêutico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Moduladores de Receptor Estrogênico/uso terapêutico , Estrogênios , Feminino , Interleucina-1beta/deficiência , Interleucina-1beta/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Hormônio-Dependentes/imunologia , Neoplasias Hormônio-Dependentes/secundário , Neoplasias Hormônio-Dependentes/terapia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Organismos Livres de Patógenos Específicos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
12.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926067

RESUMO

Tryptophanyl-tRNA synthetase (WRS) is an essential enzyme that catalyzes the ligation of tryptophan (Trp) to its cognate tRNAtrp during translation via aminoacylation. Interestingly, WRS also plays physiopathological roles in diseases including sepsis, cancer, and autoimmune and brain diseases and has potential as a pharmacological target and therapeutic. However, WRS is still generally regarded simply as an enzyme that produces Trp in polypeptides; therefore, studies of the pharmacological effects, therapeutic targets, and mechanisms of action of WRS are still at an emerging stage. This review summarizes the involvement of WRS in human diseases. We hope that this will encourage further investigation into WRS as a potential target for drug development in various pathological states including infection, tumorigenesis, and autoimmune and brain diseases.


Assuntos
Triptofano-tRNA Ligase/metabolismo , Triptofano-tRNA Ligase/fisiologia , Doença de Alzheimer , Humanos , Interferon gama/farmacologia , Neoplasias , Sepse , Triptofano/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/imunologia
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(5): 735-739, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34622585

RESUMO

In recent years, immunotherapy, as an emerging anti-tumor therapy, has shown great potential in the treatment of both solid and hematologic tumors. There is increasing preclinical and clinical evidence linking the composition of gut microbiome with the efficacy as well as adverse effects of immune checkpoint inhibitor anti-tumor therapy. We summarized in this review the modulatory role of the gut microbiome in antitumor therapy with different immune checkpoint inhibitors. We also discussed the limitations of existing research and prospective development of the further clinical strategies.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias/tratamento farmacológico , Estudos Prospectivos
14.
Mol Cancer ; 18(1): 132, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477121

RESUMO

Surgical resection is an important avenue for cancer treatment, which, in most cases, can effectively alleviate the patient symptoms. However, accumulating evidence has documented that surgical resection potentially enhances metastatic seeding of tumor cells. In this review, we revisit the literature on surgical stress, and outline the mechanisms by which surgical stress, including ischemia/reperfusion injury, activation of sympathetic nervous system, inflammation, systemically hypercoagulable state, immune suppression and effects of anesthetic agents, promotes tumor metastasis. We also propose preventive strategies or resolution of tumor metastasis caused by surgical stress.


Assuntos
Neoplasias/patologia , Neoplasias/cirurgia , Estresse Fisiológico , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Animais , Biomarcadores , Terapia Combinada , Progressão da Doença , Humanos , Imunomodulação , Neoplasias/etiologia , Neoplasias/metabolismo , Células Neoplásicas Circulantes/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Procedimentos Cirúrgicos Operatórios/métodos , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/metabolismo , Microambiente Tumoral
15.
Mol Cancer ; 17(1): 109, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064416

RESUMO

Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemical therapy increase patient mortality. Therefore, it is both urgent and important to identify biomarkers facilitating early identification and novel agents preventing recurrence. Accumulating evidence demonstrates that epigenetic aberrations (particularly histone modifications) are crucial in tumor initiation and development. Histone acetylation and methylation are respectively regulated by acetyltransferases-deacetylases and methyltransferases-demethylases, both of which are implicated in ovarian cancer pathogenesis. In this review, we summarize the most recent discoveries pertaining to ovarian cancer development arising from the imbalance of histone acetylation and methylation, and provide insight into novel therapeutic interventions for the treatment of ovarian carcinoma.


Assuntos
Histonas/metabolismo , Neoplasias Ovarianas/metabolismo , Acetilação , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Metilação , Neoplasias Ovarianas/genética
16.
Mass Spectrom Rev ; 36(3): 450-470, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26633258

RESUMO

Applications of mass spectrometry (MS) are rapidly expanding and encompass molecular and cellular biology. MS aids in the analysis of in vivo global molecular alterations, identifying potential biomarkers which may improve diagnosis and treatment of various pathologies. MS has added new dimensionality to medical research. Pioneering gynecologists now study molecular mechanisms underlying female reproductive pathology with MS-based tools. Although benign gynecologic disorders including endometriosis, adenomyosis, leiomyoma, and polycystic ovarian syndrome (PCOS) carry low mortality rates, they cause significant physical, mental, and social detriments. Additionally, some benign disorders are unfortunately associated with malignancies. MS-based technology can detect malignant changes in formerly benign proteomes and metabolomes with distinct advantages of speed, sensitivity, and specificity. We present the use of MS in proteomics and metabolomics, and summarize the current understanding of the molecular pathways concerning female reproductive anatomy. Highlight discoveries of novel protein and metabolite biomarkers via MS-based technology, we underscore the clinical application of these techniques in the diagnosis and management of benign gynecological disorders. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:450-470, 2017.


Assuntos
Doenças dos Genitais Femininos/diagnóstico , Espectrometria de Massas/métodos , Metabolômica/métodos , Proteômica/métodos , Adenomiose/diagnóstico , Adenomiose/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Endometriose/diagnóstico , Endometriose/metabolismo , Feminino , Doenças dos Genitais Femininos/metabolismo , Humanos , Leiomioma/diagnóstico , Leiomioma/metabolismo , Metaboloma , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/metabolismo , Proteoma/análise , Proteoma/metabolismo , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/metabolismo
17.
Mass Spectrom Rev ; 32(4): 267-311, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23165949

RESUMO

Tumorigenesis is always concomitant with microenvironmental alterations. The tumor microenvironment is a heterogeneous and complex milieu, which exerts a variety of stresses on tumor cells for proliferation, survival, or death. Recently, accumulated evidence revealed that metabolic and oxidative stresses both play significant roles in tumor development and progression that converge on a common autophagic pathway. Tumor cells display increased metabolic autonomy, and the hallmark is the exploitation of aerobic glycolysis (termed Warburg effect), which increased glucose consumption and decreased oxidative phosphorylation to support growth and proliferation. This characteristic renders cancer cells more aggressive; they devour tremendous amounts of nutrients from microenvironment to result in an ever-growing appetite for new tumor vessel formation and the release of more "waste," including key determinants of cell fate like lactate and reactive oxygen species (ROS). The intracellular ROS level of cancer cells can also be modulated by a variety of stimuli in the tumor microenvironment, such as pro-growth and pro-inflammatory factors. The intracellular redox state serves as a double-edged sword in tumor development and progression: ROS overproduction results in cytotoxic effects and might lead to apoptotic cell death, whereas certain level of ROS can act as a second-messenger for regulation of such cellular processes as cell survival, proliferation, and metastasis. The molecular mechanisms for cancer cell responses to metabolic and oxidative stresses are complex and are likely to involve multiple molecules or signaling pathways. In addition, the expression and modification of these proteins after metabolic or oxidative stress challenge are diverse in different cancer cells and endow them with different functions. Therefore, MS-based high-throughput platforms, such as proteomics, are indispensable in the global analysis of cancer cell responses to metabolic and oxidative stress. Herein, we highlight recent advances in the understanding of the metabolic and oxidative stresses associated with tumor progression with proteomics-based systems biology approaches.


Assuntos
Carcinogênese/metabolismo , Espectrometria de Massas/métodos , Estresse Oxidativo , Proteômica/métodos , Animais , Carcinogênese/patologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
18.
Mol Cell Proteomics ; 11(7): M112.017988, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22493182

RESUMO

Adenomyosis is a common estrogen-dependent disorder of females characterized by a downward extension of the endometrium into the uterine myometrium and neovascularization in ectopic lesions. It accounts for chronic pelvic pain, dysmenorrhea, menorrhagia, and infertility in 8.8-61.5% women worldwide. However, the molecular mechanisms for adenomyosis development remain poorly elucidated. Here, we utilized a two-dimensional polyacrylamide gel electrophoresis/MS-based proteomics analysis to compare and identify differentially expressed proteins in matched ectopic and eutopic endometrium of adenomyosis patients. A total of 93 significantly altered proteins were identified by tandem MS analysis. Further cluster analysis revealed a group of estrogen-responsive proteins as dysregulated in adenomyosis, among which annexin A2, a member of annexin family proteins, was found up-regulated most significantly in the ectopic endometrium of adenomyosis compared with its eutopic counterpart. Overexpression of ANXA2 was validated in ectopic lesions of human adenomyosis and was found to be tightly correlated with markers of epithelial to mesenchymal transition and dysmenorrhea severity of adenomyosis patients. Functional analysis demonstrated that estrogen could remarkably up-regulate ANXA2 and induce epithelial to mesenchymal transition in an in vitro adenomyosis model. Enforced expression of ANXA2 could mediate phenotypic mesenchymal-like cellular changes, with structural and functional alterations in a ß-catenin/T-cell factor (Tcf) signaling-associated manner, which could be reversed by inhibition of ANXA2 expression. We also proved that enforced expression of ANXA2 enhanced the proangiogenic capacity of adenomyotic endometrial cells through HIF-1α/VEGF-A pathway. In vivo, we demonstrated that ANXA2 inhibition abrogated endometrial tissue growth, metastasis, and angiogenesis in an adenomyosis nude mice model and significantly alleviated hyperalgesia. Taken together, our data unraveled a dual role for ANXA2 in the pathogenesis of human adenomyosis through conferring endometrial cells both metastatic potential and proangiogenic capacity, which could serve as a potential therapeutic target for the treatment of adenomyosis patients.


Assuntos
Anexina A2/metabolismo , Biomarcadores Tumorais/metabolismo , Endometriose/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Uterinas/irrigação sanguínea , Neoplasias Uterinas/metabolismo , Adulto , Animais , Anexina A2/genética , Biomarcadores Tumorais/genética , Eletroforese em Gel de Poliacrilamida , Endometriose/genética , Endométrio/metabolismo , Endométrio/patologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Pessoa de Meia-Idade , Família Multigênica , Miométrio/metabolismo , Miométrio/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neovascularização Patológica , Proteômica , Espectrometria de Massas em Tandem , Neoplasias Uterinas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
iScience ; 27(3): 109298, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455973

RESUMO

Endometriosis is a chronic multisystem disease associated with immunological, genetic, hormonal, psychological, and neuroscientific factors, leading to a significant socioeconomic impact worldwide. Though multidisciplinary management is the ideal approach, there remains a scarcity of published interdisciplinary clinical trials at present. Here, we have conducted a comprehensive analysis of the characteristics and issues of interdisciplinary trials on endometriosis based on the clinical registration database ClinicalTrials.gov. Among all 387 endometriosis trials, 30% (116) were identified as interdisciplinary, mostly conducted in Europe and North America, and fully funded by non-industrial sources. We documented growth in both patient-centered multidisciplinary comprehensive management and collaboration between fundamental biomedical science and applied medicine. However, compared to traditional obstetric-gynecological trials, interdisciplinary studies exhibited negative characteristics such as less likely to be randomized and less likely to report results. Our study provides insights for future trial investigators and may contribute to fostering greater collaboration in medical research.

20.
Front Cell Dev Biol ; 12: 1417750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045454

RESUMO

Ferroptosis is an iron-dependent form of cell death, distinct from apoptosis, necrosis, and autophagy, and is characterized by altered iron homeostasis, reduced defense against oxidative stress, and increased lipid peroxidation. Extensive research has demonstrated that ferroptosis plays a crucial role in the treatment of gynecological malignancies, offering new strategies for cancer prevention and therapy. However, chemotherapy resistance poses an urgent challenge, significantly hindering therapeutic efficacy. Increasing evidence suggests that inducing ferroptosis can reverse tumor resistance to chemotherapy. This article reviews the mechanisms of ferroptosis and discusses its potential in reversing chemotherapy resistance in gynecological cancers. We summarized three critical pathways in regulating ferroptosis: the regulation of glutathione peroxidase 4 (GPX4), iron metabolism, and lipid peroxidation pathways, considering their prospects and challenges as strategies to reverse chemotherapy resistance. These studies provide a fresh perspective for future cancer treatment modalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA