RESUMO
Systematic management of infected wounds requires simultaneous antiinfection and wound healing, which has become the current treatment dilemma. Recently, a multifunctional silver nanoclusters (AgNCs)-based hydrogel dressing to meet these demands is developed. Here a diblock DNA with a cytosine-rich fragment (as AgNCs template) and a guanine-rich fragment (to form G-quadruplex/hemin DNAzyme, termed G4/hemin) is designed, for G4/hemin functionalization of AgNCs. Inside bacteria, G4/hemin can not only accelerate the oxidative release of Ag+ from AgNCs but also generate reactive oxygen species (ROS) via catalase- and peroxidase-mimic activities, which enhance the antibacterial effect. On the other hand, the AgNCs exhibit robust anti-inflammatory and antioxidative activities to switch M1 macrophages into M2 phenotype, which promotes wound healing. Moreover, the hemin is released to upregulate the heme oxygenase-1, an intracellular enzyme that can relieve oxidative stress, which significantly alleviates the cytotoxicity of silver. As a result, such silver-based dressing achieves potent therapeutic efficacy on infected wounds with excellent biosafety.
Assuntos
DNA Catalítico , Nanopartículas Metálicas , Prata , Hemina , DNA , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , HidrogéisRESUMO
One-lung ventilation (OLV) during thoracic surgery often leads to post-operative complications, yet effective pharmacological interventions are lacking. This study reports a baicalin-based metal-coordination nanomedicine with disulfiram (DSF) co-loading to address one-lung ventilation-induced lung injury and reperfusion injury (OLV-LIRI). Baicalin, known for its robust antioxidant properties, suffers from poor water solubility and stability. Leveraging nanotechnology, baicalin's coordination is systematically explored with seven common metal ions, designing iron/copper-mediated binary coordination nanoparticles to overcome these limitations. The self-assembled nanoparticles, primarily formed through metal coordination and π-π stacking forces, encapsulated DSF, ensuring high colloidal stability in diverse physiological matrices. Upon a single-dose administration via endotracheal intubation, the nanoparticles efficiently accumulate in lung tissues and swiftly penetrate the pulmonary mucosa. Intracellularly, baicalin exhibits free radical scavenging activity to suppress inflammation. Concurrently, the release of Cu2+ and DSF enables the in situ generation of CuET, a potent inhibitor of cell pyroptosis. Harnessing these multifaceted mechanisms, the nanoparticles alleviate lung injury symptoms without notable toxic side effects, suggesting a promising preventive strategy for OLV-LIRI.
RESUMO
Pancreatic cancer remains a formidable challenge in oncology due to its aggressive nature and limited treatment options. The dense stroma surrounding pancreatic tumors not only provides structural support but also presents a formidable barrier to effective therapy, hindering drug penetration and immune cell infiltration. This review delves into the intricate interplay between stromal components and cancer cells, highlighting their impact on treatment resistance and prognosis. Strategies for stromal remodeling, including modulation of cancer-associated fibroblasts (CAFs), pancreatic stellate cells (PSCs) activation states, and targeting extracellular matrix (ECM) components, are examined for their potential to enhance drug penetration and improve therapeutic efficacy. Integration of stromal remodeling with conventional therapies, such as chemotherapy and immunotherapy, is discussed along with the emerging field of intelligent nanosystems for targeted drug delivery. This comprehensive overview underscores the importance of stromal remodeling in pancreatic cancer treatment and offers insights into promising avenues for future research and clinical translation.
Assuntos
Fibroblastos Associados a Câncer , Sistemas de Liberação de Medicamentos , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/efeitos dos fármacos , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Matriz Extracelular/metabolismo , Imunoterapia/métodosRESUMO
Thrombotic diseases impose a significant global health burden, and conventional drug-based thrombolytic therapies are encumbered by the risk of bleeding complications. In this study, we introduce a novel drug-free nanomedicine founded on tea polyphenols nanoparticles (TPNs), which exhibits multifaceted capabilities for localized photothermal thrombolysis. TPNs were synthesized through a one-pot process under mild conditions, deriving from the monomeric epigallocatechin-3-gallate (EGCG). Within this process, indocyanine green (ICG) was effectively encapsulated, exploiting multiple intermolecular interactions between EGCG and ICG. While both TPNs and ICG inherently possessed photothermal potential, their synergy significantly enhanced photothermal conversion and stability. Furthermore, the nanomedicine was functionalized with cRGD for targeted delivery to activated platelets within thrombus sites, eliciting robust thrombolysis upon laser irradiation across diverse thrombus types. Importantly, the nanomedicine's potent free radical scavenging abilities concurrently mitigated vascular inflammation, thus diminishing the risk of disease recurrence. In summary, this highly biocompatible multifunctional nanomaterial holds promise as a comprehensive approach that combines thrombolysis with anti-inflammatory actions, offering precision in thrombosis treatment.
Assuntos
Nanomedicina , Trombose , Humanos , Polifenóis/farmacologia , Chá , Terapia Trombolítica , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Inflamação/tratamento farmacológico , Trombose/tratamento farmacológicoRESUMO
Engineered Salmonella has emerged as a promising microbial immunotherapy against tumors; however, its clinical effectiveness has encountered limitations. In our investigation, we unveil a non-dose-dependent type of behavior regarding Salmonella's therapeutic impact and reveal the regulatory role of neutrophils in diminishing the efficacy of this. While Salmonella colonization within tumors recruits a substantial neutrophil population, these neutrophils predominantly polarize into the pro-tumor N2 phenotype, elevating PD-L1 expression and fostering an immunosuppressive milieu within the tumor microenvironment. In order to bypass this challenge, we introduce MnO2 nanoparticles engineered to activate the STING pathway. Harnessing the STING pathway to stimulate IFN-ß secretion prompts a shift in neutrophil polarization from the N2 to the N1 phenotype. This strategic repolarization remodels the tumor immune microenvironment, making the infiltration and activation of CD8+ T cells possible. Through these orchestrated mechanisms, the combined employment of Salmonella and MnO2 attains the synergistic enhancement of anti-tumor efficacy, achieving the complete inhibition of tumor growth within 20 days and an impressive 80% survival rate within 40 days, with no discernible signs of significant adverse effects. Our study not only unveils the crucial in vivo constraints obstructing microbial immune therapy but also sets out an innovative strategy to augment its efficacy. These findings pave the way for advancements in cell-based immunotherapy centered on leveraging the potential of neutrophils.
Assuntos
Imunoterapia , Compostos de Manganês , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Nanopartículas , Neutrófilos , Óxidos , Salmonella , Microambiente Tumoral , Compostos de Manganês/química , Animais , Neutrófilos/imunologia , Neutrófilos/metabolismo , Imunoterapia/métodos , Camundongos , Proteínas de Membrana/metabolismo , Salmonella/imunologia , Nanopartículas/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Transdução de Sinais , HumanosRESUMO
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease, while there is a lack of pharmaceutical interventions to halt AAA progression presently. To address the multifaceted pathology of AAA, this work develops a novel multifunctional gene delivery system to simultaneously deliver two siRNAs targeting MMP-2 and MMP-9. The system (TPNs-siRNA), formed through the oxidative polymerization and self-assembly of epigallocatechin gallate (EGCG), efficiently encapsulates siRNAs during self-assembly. TPNs-siRNA safeguards siRNAs from biological degradation, facilitates intracellular siRNA transfection, promotes lysosomal escape, and releases siRNAs to silence MMP-2 and MMP-9. Additionally, TPNs, serving as a multi-bioactive material, mitigates oxidative stress and inflammation, fosters M1-to-M2 repolarization of macrophages, and inhibits cell calcification and apoptosis. In experiments with AAA mice, TPNs-siRNA accumulated and persisted in aneurysmal tissue after intravenous delivery, demonstrating that TPNs-siRNA can be significantly distributed in macrophages and VSMCs relevant to AAA pathogenesis. Leveraging the carrier's intrinsic multi-bioactive properties, the targeted siRNA delivery by TPNs exhibits a synergistic effect for enhanced AAA therapy. Furthermore, TPNs-siRNA is gradually metabolized and excreted from the body, resulting in excellent biocompatibility. Consequently, TPNs emerges as a promising multi-bioactive nanotherapy and a targeted delivery nanocarrier for effective AAA therapy.
Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 9 da Matriz , Camundongos Endogâmicos C57BL , Nanopartículas , RNA Interferente Pequeno , Aneurisma da Aorta Abdominal/tratamento farmacológico , Animais , Camundongos , Nanopartículas/química , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Polifenóis/química , Polifenóis/farmacologia , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Chá/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Técnicas de Transferência de Genes , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Apoptose/efeitos dos fármacosRESUMO
Innovative chiral capillary silica monoliths (CSMs) were developed based on DNA nanoflowers (DNFs). Baseline separation of enantiomers such as atenolol, tyrosine, histidine, and nefopam was achieved by using DNF-modified CSMs, and the obtained resolution value was higher than 1.78. To further explore the effect of DNFs on enantioseparation, different types of chiral columns including DNA strand containing the complementary sequence of the template (DCT)-modified CSMs, DNF2-modified CSMs, and DNF3-modified CSMs were prepared as well. It was observed that DNF-modified CSMs displayed better chiral separation ability compared with DCT-based columns. The intra-day and inter-day repeatability of model analytes' retention time and resolution kept desirable relative standard deviation values of less than 8.28%. DNF2/DNF3-modified CSMs were able to achieve baseline separation of atenolol, propranolol, 2'-deoxyadenosine, and nefopam enantiomers. Molecular docking simulations were performed to investigate enantioselectivity mechanisms of DNA sequences for enantiomers. To indicate the successful construction of DNFs and DNF-modified CSMs, various charaterization approaches including scanning electron microscopy, agarose gel electrophoresis, dynamic light scattering analysis, electroosmotic flow, and Fourier-transform infrared spectroscopy were utilized. Moreover, the enantioseparation performance of DNF-modified CSMs was characterized in terms of sample volume, applied voltage, and buffer concentration. This work paves the way to applying DNF-based capillary electrochromatography microsystems for chiral separation.
Assuntos
DNA , Dióxido de Silício , Dióxido de Silício/química , DNA/química , DNA/isolamento & purificação , Estereoisomerismo , Simulação de Acoplamento Molecular , Atenolol/química , Atenolol/isolamento & purificação , Nanoestruturas/química , Propranolol/química , Propranolol/isolamento & purificaçãoRESUMO
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly gastrointestinal malignancy, and chemotherapy resistance is a key factor leading to its poor prognosis. M2 tumor-associated macrophages (M2-TAMs) may be an important cause of chemoresistance in ESCC, but its exact mechanism is still unclear. METHODS: In order to study the role of M2-TAMs in ESCC chemoresistance, CCK-8, clone formation assay, flow cytometric apoptosis assay, qRT-PCR, western blotting, and serum-free sphere formation assays were used. In vivo animal experiments and human ESCC tissues were used to confirm the findings. RESULTS: In vitro and in vivo animal experiments, M2-TAMs reduced the sensitivity of ESCC cells to cisplatin. Mechanistically, M2-TAMs highly secreted TGF-ß1 which activated the TGFßR1-smad2/3 pathway to promote and maintain the stemness characteristic of ESCC cells, which could inhibit the sensitivity to cisplatin. Using TGFß signaling inhibitor SB431542 or knockdown of TGFßR1 could reverse the cisplatin resistance of ESCC cells. In 92 cases of human ESCC tissues, individuals with a high density of M2-TAMs had considerably higher levels of TGF-ß1. These patients also had worse prognoses and richer stemness markers. CONCLUSION: TGF-ß1 secreted from M2-TAMs promoted and maintained the stemness characteristic to induce cisplatin resistance in ESCC by activating the TGFß1-Smad2/3 pathway.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Linhagem Celular Tumoral , Proliferação de CélulasRESUMO
The cell, the fundamental unit of life, is constantly subjected to a myriad of molecular biophysical disturbances [...].
RESUMO
Immunotherapy has efficiently revolutionized the treatment of human neoplastic diseases. However, the overall responsive rate of current immunotherapy is still unsatisfactory, benefiting only a small proportion of patients. Therefore, significant attention has been paid to the modulation of tumor microenvironment (TME) for the enhancement of immunotherapy. Interestingly, recent studies have shown that cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) was initially found as an innate immune sensor to recognize cytoplasmic DNA (such as bacterial, viral, micronuclei, and mitochondrial). It is a promising signaling pathway to activate antitumor immune responses via type I interferon production. Notably, Mn2+ was found to be a critical molecule to sensitize the activation of the cGAS-STING pathway for better immunotherapy. This activation led to the development of Mn2+-based strategies for tumor immunotherapy via the activation of the cGAS-STING pathway. In this critical review, we aimed to summarize the recent progress of this field, focusing on the following three aspects. First, we briefly introduced the signaling pathway of cGAS-STING activation, and its regulation effect on the antitumor immunity cycle has been discussed. Along with this, several agonists of the cGAS-STING pathway were introduced with their potential as immunotherapeutic drugs. Then, the basic biological functions of Mn2+ have been illustrated, focusing on its critical roles in the cGAS-STING pathway activation. Next, we systematically reviewed the Mn2+-based strategies for tumor immunotherapy, which can be classified by the methods based on Mn2+ alone or Mn2+ combined with other therapeutic modalities. We finally speculated the future perspectives of the field and provided rational suggestions to develop better Mn2+-based therapeutics.
RESUMO
Lead contamination in the environment tends to enter the food chain and further into the human body, causing serious health issues. Herein, we proposed a Csm6-DNAzyme tandem assay (termed cDNAzyme) using CRISPR/Cas III-A Csm6 and GR-5 DNAzyme, enabling one-pot and sensitive detection of lead contamination. We found that Pb2+-activated GR-5 DNAzyme produced cleaved substrates that can serve as the activator of Csm6, and the Csm6-DNAzyme tandem improved the sensitivity for detecting Pb2+ by 6.1 times compared to the original GR-5 DNAzyme. Due to the high specificity of DNAzyme, the cDNAzyme assay can discriminate Pb2+ from other bivalent and trivalent interfering ions and allowed precise detection of Pb2+ in water and food samples. Particularly, the assay can achieve one-step, mix-and-read detection of Pb2+ at room temperature. We used the cDNAzyme assay to investigate the accumulation of lead in mice, and found that lead accumulated at higher levels in the colon and kidney compared to the liver, and most of the lead was excreted. The cDNAzyme assay is promising to serve as analytical tools for lead-associated environmental and biosafety issues.
Assuntos
Técnicas Biossensoriais , DNA Catalítico , Camundongos , Humanos , Animais , DNA Catalítico/metabolismo , Chumbo , Bioacumulação , Íons , Limite de DetecçãoRESUMO
Macrophages play essential roles in the progression of rheumatoid arthritis (RA), which are polarized into the pro-inflammatory M1 phenotype with significant oxidative stress and cytokines excretion. Herein, an active targeting nanomedicine based on metal-organic frameworks (MOFs) to re-educate the diseased macrophages for RA therapy is reported. The MOFs are prepared via coordination between tannic acid (TA) and Fe3+ , and anti-TNF-α siRNA is loaded via a simple sonication process, achieving high loading capacity comparable to cationic vectors. The MOFs show excellent biocompatibility, and enable rapid endo/lysosome escape of siRNA via the proton-sponge effect for effective cytokines down-regulation. Importantly, such nanomedicine displays intrinsic radicals scavenging capability to eliminate a broad spectrum of reactive oxygen and nitrogen species (RONS), which in turn repolarizes the M1 macrophages into anti-inflammatory M2 phenotypes for enhanced RA therapy in combination with siRNA. The MOFs are further modified with bovine serum albumin (BSA) to allow cascade RA joint and diseased macrophages targeted delivery. As a result, an excellent anti-RA efficacy is achieved in a collagen-induced arthritis mice model. This work provides a robust gene vector with great translational potential, and offers a vivid example of rationally designing MOF structure with multifunctionalities to synergize with its payload for enhanced disease treatment.
Assuntos
Artrite Reumatoide , Estruturas Metalorgânicas , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Citocinas , Camundongos , RNA Interferente Pequeno , Espécies Reativas de Oxigênio , Inibidores do Fator de Necrose TumoralRESUMO
Alzheimer disease (AD) is the leading cause of dementia that affects millions of old people. Despite significant advances in the understanding of AD pathobiology, no disease modifying treatment is available. MicroRNA-124 (miR-124) is the most abundant miRNA in the normal brain with great potency to ameliorate AD-like pathology, while it is deficient in AD brain. Herein, the authors develop a DNA nanoflowers (DFs)-based delivery system to realize exogenous supplementation of miR-124 for AD therapy. The DFs with well-controlled size and morphology are prepared, and a miR-124 chimera is attached via hybridization. The DFs are further modified with RVG29 peptide to simultaneously realize brain-blood barrier (BBB) penetration and neuron targeting. Meanwhile, Rutin, a small molecular ancillary drug, is co-loaded into the DFs structure via its intercalation into the double stranded DNA region. Interestingly, Rutin could synergize miR-124 to suppress the expression of both BACE1 and APP, thus achieving a robust inhibition of amyloid ß generation. The nanosystem could pro-long miR-124 circulation in vivo, promote its BBB penetration and neuron targeting, resulting in a significant increase of miR-124 in the hippocampus of APP/PS1 mice and robust therapeutic efficacy in vivo. Such a bio-derived therapeutic system shows promise as a biocompatible nanomedicine for AD therapy.
Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Encéfalo/metabolismo , DNA/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Neurônios/metabolismo , Rutina/metabolismo , Rutina/farmacologia , Rutina/uso terapêuticoRESUMO
Photodynamic therapy (PDT) has emerged as a promising tumor treatment method via light-triggered generation of reactive oxygen species (ROS) to kill tumor cells. However, the efficacy of PDT is usually restricted by several biological limitations, including hypoxia, excess glutathione (GSH) neutralization, as well as tumor resistance. To tackle these issues, herein we developed a new kind of DNA nanozyme to realize enhanced PDT and synergistic tumor ferroptosis. The DNA nanozyme was constructed via rolling circle amplification, which contained repeat AS1411 G quadruplex (G4) units to form multiple G4/hemin DNAzymes with catalase-mimic activity. Both hemin, an iron-containing porphyrin cofactor, and chlorine e6 (Ce6), a photosensitizer, were facilely inserted into G4 structure with high efficiency, achieving in-situ catalytic oxygenation and photodynamic ROS production. Compared to other self-oxygen-supplying tools, such DNA nanozyme is advantageous for high biological stability and compatibility. Moreover, the nanostructure could achieve tumor cells targeting internalization and intranuclear transport of Ce6 by virtue of specific nucleolin binding of AS1411. The nanozyme could catalyze the decomposition of intracellular H2O2 into oxygen for hypoxia relief as evidenced by the suppression of hypoxia-inducible factor-1α (HIF-1α), and moreover, GSH depletion and cell ferroptosis were also achieved for synergistic tumor therapy. Upon intravenous injection, the nanostructure could effectively accumulate into tumor, and impose multi-modal tumor therapy with excellent biocompatibility. Therefore, by integrating the capabilities of O2 generation and GSH depletion, such DNA nanozyme is a promising nanoplatform for tumor PDT/ferroptosis combination therapy.
Assuntos
DNA Catalítico , Ferroptose , Fotoquimioterapia , Porfirinas , Catalase , DNA , Glutationa/metabolismo , Hemina , Humanos , Peróxido de Hidrogênio , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ferro , Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Porfirinas/química , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Atherosclerosis (AS) is a leading cause of vascular diseases that severely threats the human health due to the lack of efficient therapeutic methods. During the development and progress of AS, macrophages play critical roles, which are polarized into pro-inflammatory M1 phenotype to excrete abundant cytokines and overproduce reactive oxygen species (ROS), and take up excess amount of lipid to form foam cells. In this work, we developed a MnO2-based nanomedicine to re-educate macrophages for targeting AS therapy. The MnO2 was one-pot synthesized under mild condition, showing intrinsic catalase-mimic activity for self-oxygenation by using endogenous H2O2 as substrate. Moreover, the mesoporous structure as well as the abundant metal coordination sites in MnO2 structure facilitated the loading of an anti-AS drug of curcumin (Cur), achieving extraordinarily high drug loading capacity of 54%. Cur displayed a broad spectrum of anti-oxidant and anti-inflammatory capabilities to repolarize M1 macrophages into M2 phenotype, and the catalytic MnO2 recovered the function of lipid efflux transporter to remove lipid from cells by suppressing HIF-1α. Collectively, the nanocarrier and the payload drug functioned as an all-active nanoplatform to synergistically alleviate the syndromes of AS. In ApoE-/- mice model, the nanosystem could significantly prolong the circulation half-life of Cur by sixfold, and enhance drug accumulation in atherosclerotic lesion by 3.5-fold after intravenous injection by virtue of surface hyaluronic acid (HA) modification. As a result, a robust anti-AS efficacy was achieved as evidenced by the decrease of atherosclerotic lesion, plaque area, lipid level.
Assuntos
Aterosclerose , Nanopartículas , Animais , Aterosclerose/tratamento farmacológico , Peróxido de Hidrogênio , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Camundongos , Nanopartículas/química , Óxidos/químicaRESUMO
Salmonella selectively colonizes into the hypoxic tumor region and exerts antitumor effects via multiple mechanisms, while the tumor colonized Salmonella recruits host neutrophils into the tumor, presenting a key immunological restraint to compromise the Salmonella efficacy. Here, we develop a combinatorial strategy by employing silver nanoparticles (AgNPs) to improve the efficacy and biosafety of Salmonella. The AgNPs were decorated with sialic acid (SA) to allow selective recognition of L-selectin on neutrophil surfaces, based on which the tumor-homing of AgNPs was achieved by neutrophil infiltration in the Salmonella colonized tumor. The tumor-targeting AgNPs exert the functions of (1) local depletion of neutrophils in tumors to boost the efficacy of Salmonella, (2) direct killing tumor cells via L-selectin-mediated intracellular delivery, and (3) clearing the residual Salmonella after complete tumor eradication to minimize the side effects. With a single tail vein injection of such combination treatment, the tumor was eliminated with high biosafety, resulting in a superior therapeutic outcome.
Assuntos
Nanopartículas Metálicas , Prata , Contenção de Riscos Biológicos , Infiltração de Neutrófilos , SalmonellaRESUMO
Capillary electrophoresis (CE) presents a promising possibility for analyzing traditional Chinese medicine (TCM) due to its low reagent consumption, high analysis speed, and enhanced efficiency. Herein we review the employment of CE for analyzing the effective components in TCM and identifying TCM via a fingerprint. Furthermore, we discuss the application of state-of-the-art capillary electrophoresis modes for screening enzyme inhibitors and investigating the interactions between TCM and plasma proteins. The review concludes with recommendations for future studies and improvements in this field of research. The general development trend identified in this review indicates that the application of CE has significantly improved TCM assay performance.
Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Eletroforese Capilar , Inibidores EnzimáticosRESUMO
BACKGROUND: Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) are potential tools to minimize the side effects and substantially enhance the therapeutic efficacy of chemotherapy. However, it is challenging to achieve spatially and temporally controllable and accurate drug release in tumor sites based on ROS-responsive DDSs. To solve this problem, we designed a nanosystem combined photodynamic therapy (PDT) and ROS-responsive chemotherapy. METHODS: Indocyanine green (ICG), an ROS trigger and photosensitizer, and pB-DOX, a ROS-responsive prodrug of doxorubicin (DOX), were coencapsulated in polyethylene glycol modified liposomes (Lipo/pB-DOX/ICG) to construct a combination therapy nanosystem. The safety of nanosystem was assessed on normal HEK-293 cells, and the cellular uptake, intracellular ROS production capacity, target cell toxicity, and combined treatment effect were estimated on human breast cancer cells MDA-MB-231. In vivo biodistribution, biosafety assessment, and combination therapy effects were investigated based on MDA-MB-231 subcutaneous tumor model. RESULTS: Compared with DOX·HCl, Lipo/pB-DOX/ICG showed higher safety on normal cells. The toxicity of target cells of Lipo/pB-DOX/ICG was much higher than that of DOX·HCl, Lipo/pB-DOX, and Lipo/ICG. After endocytosis by MDA-MB-231 cells, Lipo/pB-DOX/ICG produced a large amount of ROS for PDT by laser irradiation, and pB-DOX was converted to DOX by ROS for chemotherapy. The cell inhibition rate of combination therapy reached up to 93.5 %. After the tail vein injection (DOX equivalent of 3.0 mg/kg, ICG of 3.5 mg/kg) in mice bearing MDA-MB-231 tumors, Lipo/pB-DOX/ICG continuously accumulated at the tumor site and reached the peak at 24 h post injection. Under irradiation at this time point, the tumors in Lipo/pB-DOX/ICG group almost disappeared with 94.9 % tumor growth inhibition, while those in the control groups were only partially inhibited. Negligible cardiotoxicity and no treatment-induced side effects were observed. CONCLUSIONS: Lipo/pB-DOX/ICG is a novel tool for on-demand drug release at tumor site and also a promising candidate for controllable and accurate combinatorial tumor therapy.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Lipossomos , Espécies Reativas de Oxigênio , Animais , Linhagem Celular Tumoral , Terapia Combinada , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Células HEK293 , Humanos , Verde de Indocianina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Pró-Fármacos , Oxigênio Singlete , Distribuição TecidualRESUMO
BACKGROUND: Photodynamic therapy (PDT) is a clinically implemented modality to combat malignant tumor, while its efficacy is largely limited by several resistance factors from tumor microenvironment (TME), such as hypoxia, anti-oxidant systems, and ATP-dependent tumor adaptive resistances. The aim of this work is to construct a multifunctional nanoplatform to remodel multiple resistant TME for enhanced PDT. RESULTS: Here, a targeting nano-reactor was facilely constructed to reverse the multiple resistances of PDT by incorporating glucose oxidase (GOx) and chlorin e6 (Ce6) into poly (D, L-lactic-co-glycolic acid) (PLGA)/ metal-organic framework (MOF) core-shell nanoassembly, with surface deposition of hyaluronic acid (HA) stabilized MnO2. The nano-reactor could selectively target tumor cells by virtue of surface HA modification, and once internalization, a few reactions were initiated to modulate TME. Glucose was consumed by GOx to inhibit ATP generation, and the produced H2O2 was catalyzed by MnO2 to generate O2 for tumor hypoxia alleviation and photodynamic sensitization, and glutathione (GSH) was also effectively depleted by MnO2 to suppress the tumor antioxidant defense. Consequently, the nano-reactor achieved robust PDT with amplified tumor therapy via intravenous injection. CONCLUSIONS: This nano-reactor offers a multifunctional nanoplatform to sensitize TME-limited tumor treatment means via reversing multiple resistances.