Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081168

RESUMO

TDLAS (tunable diode laser absorption spectroscopy) is an important gas analysis method that can be employed to obtain characteristic parameters non-invasively by the infrared absorption spectra of tracer molecules such as CH4, H2O and O2. In this study, a portable H2O-based TDLAS system with a dual optical path was developed with the aim of assessing the combustion characteristics of flammable gases. Firstly, a calculation method of gas characteristics including temperature and velocity combining absorption spectra and a HITRAN database was provided. Secondly, to calibrate and validate this TDLAS system precisely, a pressure vessel and a shock tube were introduced innovatively to generate static or steady flow fields with preset constant temperatures, pressures, or velocities. Static tests within environment pressures up to 2 MPa and steady flow field tests with temperatures up to 1600 K and flow velocities up to 950 m/s were performed for verification. It was proved that this system can provide an accurate values for high temperature and velocity gas flows. Finally, an experimental investigation of CH4/air flames was conducted to test the effectiveness of the system when applied to small diffusion flames. This TDLAS system gave satisfactory flame temperature and velocity data owing to the dual optical path design and high frequency scanning, which compensated for scale effects and pulsation of the flame. This work demonstrates a valuable new approach to thermal hazard analysis in specific environments.

2.
R Soc Open Sci ; 7(4): 191478, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32431863

RESUMO

Concerning the issues regarding driving mileage reduction for electric vehicles (EVs) in cold climates, a heat pump system with low global warming potential refrigerant R290/R1234yf is employed as one of the promising solutions. Different from the widely used mobile refrigerant R134a, R290 and R1234yf are both flammable or explosive. The application of R290/R1234yf in the mobile heat pump system is hindered by unexpected refrigerant leakage with the existence of fire and explosion risk. In this study, the combustion characteristics of R290/R1234yf in a potential leakage process from an air-conditioning heat pump system for EVs were investigated. Firstly, thermodynamic behaviours of R290/R1234yf used in a typical heat pump system were analysed based on a special experimental facility designed for EVs. Then the leakage and combustion characteristics of R290/R1234yf including flame shape, temperature, radiation etc. were obtained by the experimental method under different initial temperature and mass flow rate conditions. It was found that R290/R1234yf leaked is difficult to ignite at low temperatures, while the blow-off phenomenon of the jet flame would occur at high temperature with high leakage mass flow rate. In addition, the results showed that combustion intensity would be enhanced by the leakage mass flow rate between 30 and 60°C. These results could provide guidance for fire detection and rescue system design for new energy vehicles.

3.
J Hazard Mater ; 306: 286-294, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26774983

RESUMO

The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO2. The decompression process of high pressure CO2 involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO2 pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO2 pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA