RESUMO
Ribosome biogenesis takes place in the nucleolus, a nuclear membrane-less organelle. Although well studied, it remains unknown how nascent ribosomal subunits separate from the central chromatin compartment and move to the outer granular component, where maturation occurs. We find that the Schizosaccharomyces pombe nucleophosmin-like protein Fkbp39 localizes to rDNA sites encoding the 60S subunit rRNA, and this localization contributes to its specific association with nascent 60S subunits. Fkbp39 dissociates from chromatin to bind nascent 60S subunits, causing the latter to partition away from chromatin and from nascent 40S subunits through liquid-liquid phase separation. In vivo, Fkbp39 binding directs the translocation of nascent 60S subunits toward the nucleophosmin-rich granular component. This process increases the efficiency of 60S subunit assembly, facilitating the incorporation of 60S RNA domain III. Thus, chromatin localization determines the specificity of nucleophosmin in sorting nascent ribosomal subunits and coordinates their movement into specialized assembly compartments within the nucleolus.
Assuntos
Cromatina , Schizosaccharomyces , Cromatina/genética , Nucleofosmina , Nucléolo Celular/genética , Membrana Nuclear , Schizosaccharomyces/genética , Ribossomos/genéticaRESUMO
Many studies have focused on the effects of small molecules, such as amino acids, on metabolism under hypoxia. Recent findings have indicated that phenylalanine levels were markedly elevated in adaptation to chronic hypoxia. This raises the possibility that phenylalanine treatment could markedly improve the hypoxic endurance. However, the importance of hypoxia-regulated phenylalanine is still unclear. This study investigates the role of phenylalanine in hypoxia adaptation using a hypoxic zebrafish model and multi-omics analysis. We found that phenylalanine-related metabolic pathways are significantly up-regulated under hypoxia, contributing to enhanced hypoxic endurance. Phenylalanine treatment reduced ROS levels, improved mitochondrial oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) in hypoxic cells. Western blotting revealed increased phenylalanine uptake via L-type amino transporters (LAT1), activating the LKB1/AMPK signaling pathway. This activation up-regulated peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and the Bcl-2/Bax ratio, while down-regulating uncoupling protein 2 (UCP2), thereby improving mitochondrial function under hypoxia. This is the first comprehensive multi-omics analysis to demonstrate phenylalanine's crucial role in hypoxia adaptation, providing insights for the development of anti-hypoxic drugs.
Assuntos
Proteínas Quinases Ativadas por AMP , Mitocôndrias , Fenilalanina , Proteínas Serina-Treonina Quinases , Peixe-Zebra , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Fenilalanina/farmacologia , Fenilalanina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Hipóxia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Genômica , Quinases Proteína-Quinases Ativadas por AMP , Adaptação Fisiológica/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , MultiômicaRESUMO
Flowering plants sense various environmental and endogenous signals to trigger the floral transition and start the reproductive growth cycle. CONSTANS (CO) is a master transcription factor in the photoperiod floral pathway that integrates upstream signals and activates the florigen gene FLOWERING LOCUS T (FT). Here, we performed comprehensive structural and biochemical analyses to study the molecular mechanism underlying the regulation of FT by CO in Arabidopsis thaliana. We show that the four previously characterized cis-elements in the FT promoter proximal region, CORE1, CORE2, P1, and P2, are all direct CO binding sites. Structural analysis of CO in complex with NUCLEAR FACTOR-YB/YC (NF-YB/YC) and the CORE2 or CORE1 elements revealed the molecular basis for the specific recognition of the shared TGTG motifs. Biochemical analysis suggested that CO might form a homomultimeric assembly via its N-terminal B-Box domain and simultaneously occupy multiple cis-elements within the FT promoter. We suggest that this multivalent binding gives the CO-NF-Y complex high affinity and specificity for FT promoter binding. Overall, our data provide a detailed molecular model for the regulation of FT by the master transcription factor complex CO-NF-Y during the floral transition.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Regiões Promotoras Genéticas , Domínios Proteicos , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genéticaRESUMO
CAG is a burdensome and progressive disease. Numerous studies have shown the effectiveness of RUT in digestive system diseases. The therapeutic effects of RUT on MNNG-induced CAG and the potential mechanisms were probed. MNNG administration was employed to establish a CAG model. The HE and ELISA methods were applied to detect the treatment effects. WB, qRT-PCR, immunohistochemistry, TUNEL, and GES-1 cell flow cytometry approaches were employed to probe the mechanisms. The CAG model was successfully established. The ELISA and HE staining data showed that the RUT treatment effects on CAG rats were reflected by the amelioration of histological damage. The qRT-PCR and WB analyses indicated that the protective effect of RUT is related to the upregulation of the SHH pathway and downregulation of the downstream of apoptosis to improve gastric cellular survival. Our data suggest that RUT induces a gastroprotective effect by upregulating the SHH signaling pathway and stimulating anti-apoptosis downstream.
Assuntos
Gastrite Atrófica , Proteínas Hedgehog , Camundongos , Ratos , Animais , Gastrite Atrófica/induzido quimicamente , Gastrite Atrófica/tratamento farmacológico , Metilnitronitrosoguanidina , Quinazolinas , Nitrosoguanidinas , Transdução de SinaisRESUMO
DNA methylation, a conserved epigenetic mark, is critical for tuning temporal and spatial gene expression. The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci. However, how ROS1 is recruited to specific loci is not well understood. Here, we report the discovery of Arabidopsis AGENET Domain Containing Protein 3 (AGDP3) as a cellular factor that is required to prevent gene silencing and DNA hypermethylation. AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette. Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3K9 and unmodified H3K4 are specifically anchored into two different surface pockets. A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity. Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Transporte/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , DNA/metabolismoRESUMO
RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation pathway, which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMOLOG 2 (SHH2) is an H3K9me1 reader. Our structural studies reveal that H3K9me1 recognition is achieved by recognition of the methyl group via a classic aromatic cage and hydrogen-bonding and salt-bridge interactions with the free protons of the mono-methyllysine. The di- and tri-methylation states disrupt the polar interactions, decreasing the binding affinity. Our study reveals a mono-methyllysine recognition mechanism which potentially links RdDM to H3K9me1 in maize.
Assuntos
Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Zea mays/genéticaRESUMO
Li-Ru-Kang (LRK) has been commonly used in the treatment of hyperplasia of mammary gland (HMG) as a cipher prescription and achieved obvious therapeutic effects. However, the bioactive compounds and underlying pharmacological mechanisms remain unclear. This study aims to decipher the bioactive compounds and potential action mechanisms of LRK in the treatment of HMG using an integrated pharmacology approach. The ingredients of LRK and the corresponding drug targets were retrieved through drug target databases and were used to construct the "compound-target-disease" network and function-pathway network. Ultimately, 89 compounds and 2150 drug targets were collected. Gene ontology enrichment analysis revealed that mammary gland alveolus development and mammary gland lobule development were the key biological processes and were regulated simultaneously by three direct targets, including androgen receptor (AR), estrogen receptor (ER) and cyclin-D1. Moreover, 14 compounds of LRK were directly involved in the regulation of the three aforementioned targets. KEGG pathway enrichment analysis found that five signaling pathways and seven direct targets were closely related with HMG treatment by LRK. The results of animal experiments showed that LRK significantly improved the histopathological status of HMG in rats. Additionally, LRK markedly regulated the protein expressions of AR, cyclin-D1, MMP2, MMP3 and MMP9. But interestingly, the effect of LRK on ER was not obvious. This study demonstrated that LRK exerted its therapeutic efficacy based on multi-components, multi-targets and multi-pathways. This research confirms the advantages of network pharmacology analyses and the necessity for experimental verification.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Hiperplasia/tratamento farmacológico , Glândulas Mamárias Animais/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Feminino , Medicina Tradicional Chinesa/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacosRESUMO
Fuzheng Huayu (FZHY) capsule, a formulated traditional Chinese medicine product with 6 Chinese herbs, is widely used for HBV-related cirrhosis as an adjuvant treatment. However, the efficacy of FZHY capsule for HBV-induced cirrhosis did not be comprehensively proved by systematic analysis. Our current analysis was aimed to assess the efficacy and safety of FZHY capsule by an evidence-based method. Databases, including China National Knowledge Infrastructure, Wangfang, VIP medicine information system, Pubmed, Embase, and Cochrane Library, were searched, and the randomized controlled trials of FZHY capsule were used for the treatment of HBV-associated liver cirrhosis. Meta-analysis was performed by Review Manager 5.3. The efficacy rate, alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), albumin (ALB), Procollagen III protein (PIIIP), hyaluronic acid (HA), laminin (LN), Collagen C Type IV (IV-C), Child-Pugh score, portal vein diameter, spleen thickness, HBeAg negative conversion rate, and HBV-DNA negative conversion rate were systematically assessed. The Cochrane Risk of Bias tool was used to evaluate the methodological quality of eligible studies. Nineteen studies with 1,769 patients were included in the meta-analysis. Compared to conventional treatment, FZHY capsule was effective by increasing the efficacy. FZHY capsule was more efficient in improving ALT, AST, TBIL, PIIIP, HA, LN, IV-C, Child-Pugh grading score, portal vein diameter, spleen thickness, and HBV-DNA negative conversion rate with no serious adverse reactions. Nevertheless, a variety of well-designed randomized controlled trials are needed to confirm these findings since small samples were applied in the previous studies.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/virologia , Cápsulas , China , Terapia Combinada , Medicamentos de Ervas Chinesas/administração & dosagem , Vírus da Hepatite B/fisiologia , Humanos , Resultado do TratamentoRESUMO
Ellagitannin is a common compound in food and herbs, but there are few detailed studies on the metabolism of purified ellagitannins. FR429 is a purified ellagitannin with antitumor potential, which is from Polygonum capitatum Buch.-Ham.ex D. Don. The present study was designed to investigate the metabolic profiles of FR429 in rats in vivo. Using liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LC/MS(n)-IT-TOF), total eight metabolites were found in rat bile and urine after intravenous administration of FR429, but could not be detected in plasma. These metabolites were ellagic acid, mono-methylated FR429, ellagic acid methyl ether glucuronide, ellagic acid methyl ether diglucuronide, ellagic acid dimethyl ether glucuronide, and ellagic acid dimethyl ether diglucuronide. It was concluded that methylation and subsequent glucuronidation were the major metabolic pathways of FR429 in rats in vivo. This is the first report on the in vivo metabolism of the purified ellagitannin in rats.
Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacocinética , Polygonum/química , Animais , Masculino , Espectrometria de Massas , Ratos , Ratos Sprague-DawleyRESUMO
Miltirone (1), an abietane-type diterpene quinone isolated from Salvia miltiorrhiza, possesses anticancer activity in p-glycoprotein (P-gp)-overexpressing human cancer cells. Results of the current study suggest a dual effect of miltirone on P-gp inhibition and apoptotic induction in a human hepatoma HepG2 cell line and its P-gp-overexpressing doxorubicin-resistant counterpart (R-HepG2). Miltirone (1) elicited a concentration-dependent cytotoxicity, with a similar potency (EC50 ≈ 7-12 µM), in HepG2 and R-HepG2 cells. Miltirone (1) (1.56-6.25 µM) produced synergistic effects on doxorubicin (DOX)-induced growth inhibition of R-HepG2 (synergism: 0.3 < combination index < 0.5). Molecular docking studies illustrated that miltirone (1) interacted with the active site of P-gp with a higher binding affinity than DOX, suggesting that it was a P-gp inhibitor. Flow cytometric analysis confirmed miltirone (1) as a competitive inhibitor of P-gp. At non-necrotic concentrations (1.56-25 µM), miltirone (1) activated caspase-dependent apoptotic pathways and triggered the generation of reactive oxygen species (ROS) and ROS-mediated mitogen-activated protein kinase (MAPK) signaling pathways (e.g., p38 MAPK, stress-activated protein kinase/c-Jun N-terminal kinase, and extracellular regulated kinase 1/2) in both HepG2 and R-HepG2 cells. Thus, we conclude that miltirone (1) is a dual inhibitor of P-gp and cell growth in human drug-resistant hepatoma cells.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Doxorrubicina/farmacologia , Fenantrenos/farmacologia , Salvia miltiorrhiza/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Caspases/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura MolecularRESUMO
Isoliquiritigenin (ISL) has excellent neuroprotective effects. However, its limitations, including poor solubility, low bioavailability, and low accumulation in the brain, restrict its clinical promotion. In this study, a novel type of ISL-loaded liposome (ISL-LP) modified with the brain-targeting polypeptide angiopep-2 was prepared to improve these properties. The zeta potential, morphology, particle size, encapsulation efficiency, drug loading, and in vitro release of ISL-LP were evaluated. The pharmacokinetics and tissue distribution of ISL and ISL-LP were also investigated. The results demonstrated that ISL-LP had an average particle size of 89.36 ± 5.04 nm, a polymer dispersity index of 0.17 ± 0.03, a zeta potential of -20.27 ± 2.18 mV, and an encapsulation efficiency of 75.04 ± 3.28%. The in vitro release experiments indicate that ISL-LP is a desirable sustained-release system. After intravenous administration, LPC-LP prolonged the circulation time of ISL in vivo and enhanced its relative brain uptake. In conclusion, ISL-LP could serve as a promising brain-targeting system for the treatment and prevention of central nervous system (CNS) disorders.
RESUMO
OBJECTIVE: Alpinia oxyphylla fructus without impurities and shells is called "Yi-Zhi-Ren" (YZR) in Chinese, and traditionally used to alleviate enuresis. The aim of this study was to investigate the effects and underlying mechanisms of YZR in the treatment of overactive bladder (OAB) in spontaneously hypertensive rats (SHR), a vascular disorder-related OAB model. METHODS: A 3-week administration of YZR water extract (p.o.) was done, followed by urodynamics to measure bladder parameters. Changes in bladder structure were observed through H&E staining and Masson's staining. An integrated approach involving network pharmacology, transcriptomics and metabolomics was employed to elucidate the potential mechanisms of YZR, and the key proteins involved in the mechanisms were validated by Western blotting. Additionally, network pharmacology was used to predict the relationship between YZR's active components and validated proteins. RESULTS: YZR treatment significantly improved the bladder storage parameters, tightened the detrusor layer, reduced inflammatory infiltration, and decreased collagen proportion in the SHR bladder. These results indicated that YZR water extract can alleviate OAB symptoms and improve bladder structure. Integrated analysis suggested that YZR may affect extracellular matrix-receptor interaction and calcium signaling pathway. Western blotting results further confirmed that the reduction in key proteins, such as TGFß1, p-SMAD3, collagen III, Gq and PLCß1, involved in collagen synthesis and calcium signaling pathways after YZR treatment. Network pharmacology predicted that sitosterol, chrysin, and nootkatone were potential components responsible for YZR's therapeutic effect on OAB. CONCLUSION: YZR's mechanisms of action in treating OAB involved the TGFß1-SMAD3 signaling pathway-related collagen synthesis and Gq-PLCß1 calcium signaling pathway, which are associated with detrusor contraction frequency and strength, respectively.
Assuntos
Alpinia , Bexiga Urinária Hiperativa , Ratos , Animais , Bexiga Urinária , Ratos Endogâmicos SHR , Alpinia/química , Multiômica , Bexiga Urinária Hiperativa/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , ColágenoRESUMO
Objectives: Network pharmacology is essential for understanding the multi-target and multi-pathway therapeutic mechanisms of traditional Chinese medicine. This study aims to evaluate the influence of database quality on target identification and to explore the therapeutic potential of rhynchophylline (Rhy) in treating overactive bladder (OAB). Methods: An OAB dataset was constructed through extensive literature screening. Using this dataset, we applied network pharmacology to predict potential targets for Rhy, which is known for its therapeutic effects but lacks a well-defined target profile. Predicted targets were validated through in vitro experiments, including DARTS and CETSA. Results: Our analysis identified Rhy as a potential modulator of the M3 receptor and TRPM8 channel in the treatment of OAB. Validation experiments confirmed the interaction between Rhy and these targets. Additionally, the GeneCards database predicted other targets that are not directly linked to OAB, corroborated by the literature. Conclusions: We established a more accurate and comprehensive dataset of OAB targets, enhancing the reliability of target identification for drug treatments. This study underscores the importance of database quality in network pharmacology and contributes to the potential therapeutic strategies for OAB.
RESUMO
Adaptation to hypoxia has attracted much public interest because of its clinical significance. However, hypoxic adaptation in the body is complicated and difficult to fully explore. To explore previously unknown conserved mechanisms and key proteins involved in hypoxic adaptation in different species, we first used a yeast model for mechanistic screening. Further multi-omics analyses in multiple species including yeast, zebrafish and mice revealed that glycerophospholipid metabolism was significantly involved in hypoxic adaptation with up-regulation of lysophospholipid acyltransferase (ALE1) in yeast, a key protein for the formation of dipalmitoyl phosphatidylcholine [DPPC (16:0/16:0)], which is a saturated phosphatidylcholine. Importantly, a mammalian homolog of ALE1, lysophosphatidylcholine acyltransferase 1 (LPCAT1), enhanced DPPC levels at the cell membrane and exhibited the same protective effect in mammalian cells under hypoxic conditions. DPPC supplementation effectively attenuated growth restriction, maintained cell membrane integrity and increased the expression of epidermal growth factor receptor under hypoxic conditions, but unsaturated phosphatidylcholine did not. In agreement with these findings, DPPC treatment could also repair hypoxic injury of intestinal mucosa in mice. Taken together, ALE1/LPCAT1-mediated DPPC formation, a key pathway of glycerophospholipid metabolism, is crucial for cell viability under hypoxic conditions. Moreover, we found that ALE1 was also involved in glycolysis to maintain sufficient survival conditions for yeast. The present study offers a novel approach to understanding lipid metabolism under hypoxia and provides new insights into treating hypoxia-related diseases.
Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Membrana Celular , Glicerofosfolipídeos , Animais , Humanos , Camundongos , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Adaptação Fisiológica/genética , Membrana Celular/metabolismo , Glicerofosfolipídeos/metabolismo , Hipóxia/metabolismo , Hipóxia/genética , Mucosa Intestinal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Peixe-Zebra/genéticaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Tetradium ruticarpum (A.Juss.) T.G.Hartley, a traditional Chinese medicine with thousands of years of medicinal history, has been employed to address issues such as indigestion, abdominal pain, and vomiting. Dehydroevodiamine (DHE) is a quinazoline alkaloid extracted from traditional Chinese medicine Tetradium ruticarpum (A.Juss.) T.G.Hartley. Previous studies have shown that DHE has anti-inflammatory, analgesic, and antioxidant activities. However, it is still unclear whether DHE has an effect on ethanol-induced gastric ulcers. AIM OF THE STUDY: The objective of this study is to investigate the therapeutic efficacy and underlying mechanisms of action of DHE on ethanol-induced gastric ulcers using network pharmacology and metabolomics strategies. METHODS: In this study, we used ethanol-induced rats as a model to assess the efficacy of DHE by biochemical indicator assays and pathological tissue detection. The integration of network pharmacology and metabolomics was used to explore possible mechanisms and was validated by western blot experiments. Finally, molecular docking was used to analyze the binding energy between DHE and the targets of PIK3CG and PLA2G2A. RESULTS: DHE was able to reverse ethanol-induced abnormalities in biochemical indicators and improve pathological tissue. Network pharmacology results indicated that DHE may be involved in the regulation of gastric ulcers by modulating 79 targets, and metabolomics results showed that a total of 13 metabolites were changed before and after DHE administration. Integrating network pharmacology and metabolomics, PIK3CG and PLA2G2A were identified as possible targets to exert therapeutic effects. In addition, the MAPKs pathway may also be involved in the regulation of ethanol-induced gastric ulcers. Finally, molecular docking results showed that DHE had low binding energies with both PIK3CG and PLA2G2A. CONCLUSIONS: These findings suggest that DHE was able to exert a protective effect against ethanol-induced gastric ulcers by modulating multiple metabolites with multiple targets. This study provides a valuable reference for the development of antiulcer drugs.
Assuntos
Evodia , Úlcera Gástrica , Animais , Ratos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Anti-Inflamatórios não Esteroides , Etanol/toxicidadeRESUMO
Background: The Zuojin Pill (ZJP) is widely used for treating chronic atrophic gastritis (CAG) in clinical practice, effectively ameliorating symptoms such as vomiting, pain, and abdominal distension in patients. However, the underlying mechanisms of ZJP in treating CAG has not been fully elucidated. Purpose: This study aimed to clarify the characteristic function of ZJP in the treatment of CAG and its potential mechanism. Methods: The CAG model was established by alternant administrations of ammonia solution and sodium deoxycholate, as well as an irregular diet. Therapeutic effects of ZJP on body weight, serum biochemical indexes and general condition were analyzed. HE staining and AB-PAS staining were analyzed to characterize the mucosal injury and the thickness of gastric mucosa. Furthermore, network pharmacology and molecular docking were used to predict the regulatory mechanism and main active components of ZJP in CAG treatment. RT-PCR, immunohistochemistry, immunofluorescence and Western blotting were used to measure the expression levels of apoptosis-related proteins, gastric mucosal barrier-associated proteins and PI3K/Akt signaling pathway proteins. Results: The results demonstrated that ZJP significantly improved the general state of CAG rats, alleviated weight loss and gastric histological damage and reduced the serum biochemical indicators. Network pharmacology and molecular docking found that ZJP in treating CAG by inhibiting inflammation, suppressing apoptosis, and protecting the gastric mucosal barrier via the PI3K/Akt signaling pathway. Further experiments confirmed that ZJP obviously modulated the expression of key proteins involved in gastric mucosal cell apoptosis, such as Bax, Bad, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, Cytochrome C, Bcl-2, and Bcl-xl. Moreover, ZJP significantly reversed the protein expression of Occludin, ZO-1, Claudin-4 and E-cadherin. Conclusion: Our study revealed that ZJP treats CAG by inhibiting the PI3K/Akt signaling pathway. This research provided a scientific basis for the rational use of ZJP in clinical practice.
Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Mucosa Gástrica , Gastrite Atrófica , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Animais , Gastrite Atrófica/tratamento farmacológico , Gastrite Atrófica/patologia , Gastrite Atrófica/metabolismo , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Masculino , Doença Crônica , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Sojae semen germinatum (SSG) is derived from mature soybean seeds that have been germinated and dried, typically with sprouts measuring approximately 0.5 cm in length. SSG is traditionally known for its properties in clearing heat and moisture. Nevertheless, limited information was reported on the effects and mechanisms of SSG in alleviating urinary symptoms. This study employed urodynamic parameters to investigate the therapeutic effect of SSG water extract on overactive bladder (OAB) in the rat model with benign prostatic hyperplasia. Through a combination of transcriptomic and metabolomic analyses, the pathways and key proteins of the SSG treatment for OAB were identified and validated by ELISA and Western blotting. Furthermore, network pharmacology elucidated the roles of SSG's isoflavones acting on the target which was identified by above-mentioned multi-omics analysis. Our results indicate that SSG water extract significantly mitigated OAB by down-regulating the PGE2/EP1/PLCß2/p-MLC signaling pathway. It was speculated that the active ingredient in the SSG on EP1 was genistein. This study provided valuable insights into the molecular mechanisms of SSG water extract, emphasizing the multi-target characteristics and critical pathways in improving OAB. Furthermore, this study contributes to the potential utilization of SSG as a functional food.
Assuntos
Hiperplasia Prostática , Bexiga Urinária Hiperativa , Humanos , Masculino , Ratos , Animais , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária Hiperativa/metabolismo , Multiômica , Sementes/metabolismo , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Secreções Corporais/metabolismoRESUMO
Climate change inevitably affects vegetation growth in the Tibetan Plateau (TP). Understanding the dynamics of vegetation phenology and the responses of vegetation phenology to climate change are crucial for evaluating the impacts of climate change on terrestrial ecosystems. Despite many relevant studies conducted in the past, there still remain research gaps concerning the dominant factors that induce changes in the start date of the vegetation growing season (SOS). In this study, the spatial and temporal variations of the SOS were investigated by using a long-term series of the Normalized Difference Vegetation Index (NDVI) spanning from 2001 to 2020, and the response of the SOS to climate change and the predominant climatic factors (air temperature, LST or precipitation) affecting the SOS were explored. The main findings were as follows: the annual mean SOS concentrated on 100 DOY-170 DOY (day of a year), with a delay from east to west. Although the SOS across the entire region exhibited an advancing trend at a rate of 0.261 days/year, there were notable differences in the advancement trends of SOS among different vegetation types. In contrast to the current advancing SOS, the trend of future SOS changes shows a delayed trend. For the impacts of climate change on the SOS, winter Tmax (maximum temperature) played the dominant role in the temporal shifting of spring phenology across the TP, and its effect on SOS was negative, meaning that an increase in winter Tmax led to an earlier SOS. Considering the different conditions required for the growth of various types of vegetation, the leading factor was different for the four vegetation types. This study contributes to the understanding of the mechanism of SOS variation in the TP.
RESUMO
Primary biliary cirrhosis (PBC) is a chronic cholestatic immune liver disease characterized by persistent cholestasis, interlobular bile duct damage, portal inflammation, liver fibrosis, eventual cirrhosis, and death. Existing clinical and animal studies have made a good progress in bile acid metabolism, intestinal flora disorder inflammatory response, bile duct cell damage, and autoimmune response mechanisms. However, the pathogenesis of PBC has not been clearly elucidated. We focus on the pathological mechanism and new drug research and development of PBC in clinical and laboratory in the recent 20 years, to discuss the latest understanding of the pathological mechanism, treatment options, and drug discovery of PBC. Current clinical treatment mode and symptomatic drug support obviously cannot meet the urgent demand of patients with PBC, especially for the patients who do not respond to the current treatment drugs. New treatment methods are urgently needed. Drug candidates targeting reported targets or signals of PBC are emerging, albeit with some success and some failure. Single-target drugs cannot achieve ideal clinical efficacy. Multitarget drugs are the trend of future research and development of PBC drugs.
Assuntos
Produtos Biológicos , Colestase , Cirrose Hepática Biliar , Animais , Cirrose Hepática Biliar/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Colestase/tratamento farmacológico , Ductos Biliares , Ductos Biliares Intra-HepáticosRESUMO
Background: Gastric ulcers (GUs) are prevalent digestive disorders worldwide. Wuzhuyu Decoction (WZYT) is a traditional Chinese medicine that has been employed for centuries to alleviate digestive ailments like indigestion and vomiting. This study aims to explore the potential effects and underlying mechanisms of WZYT on alcohol induced gastric ulcer treatment. Methods: We employed macroscopic assessment to evaluate the gastric ulcer index (UI), while the enzyme-linked immunosorbent assay (ELISA) was utilized for detecting biochemical indicators. Pathological tissue analysis involved hematoxylin-eosin (H&E) staining and Periodic Acid-Schiff (PAS) staining to assess gastric tissue damage. Additionally, the integration of network analysis and metabolomics facilitated the prediction of potential targets. Validation was conducted using Western blotting. Results: The research revealed that WZYT treatment significantly reduced the gastric ulcer index (UI) and regulation of alcohol-induced biochemical indicators levels. Additionally, improvements were observed in pathological tissue. Network analysis results indicated that 62 compounds contained in WZYT modulate alcohol-induced gastric ulcers by regulating 183 genes. The serum metabolomics indicated significant changes in the content of 19 metabolites after WZYT treatment. Two pivotal targets, heme oxygenase 1 (HMOX1) and albumin (ALB), are believed to assume a significant role in the treatment of gastric ulcers by the construction of "compounds-target-metabolite" networks. Western blot analysis confirmed that WZYT has the capacity to elevate the expression of HMOX1 and ALB targets. Conclusion: The integration of network analysis and metabolomics provides a scientific basis to propel the clinical use of WZYT for GUs. Our study provides a theoretical basis for the use of Wuzhuyu decoction in the treatment of gastric ulcers.