Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Cancer ; 23(1): 86, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685067

RESUMO

BACKGROUND: CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS: The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS: OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS: We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.


Assuntos
Proteínas de Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Proteínas Nucleares , Ubiquitinação , Animais , Humanos , Camundongos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Camundongos Knockout , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Modelos Animais de Doenças
2.
Genome Res ; 31(10): 1900-1912, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33627474

RESUMO

Because disease-associated microglia (DAM) and disease-associated astrocytes (DAA) are involved in the pathophysiology of Alzheimer's disease (AD), we systematically identified molecular networks between DAM and DAA to uncover novel therapeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA sequencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-enzyme associations, the human protein-protein interactome, and large-scale longitudinal patient data. Through this approach, we find both common and unique gene network regulators between DAM (i.e., PAK1, MAPK14, and CSF1R) and DAA (i.e., NFKB1, FOS, and JUN) that are significantly enriched by neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1). We identify shared immune pathways between DAM and DAA, including Th17 cell differentiation and chemokine signaling. Last, integrative metabolite-enzyme network analyses suggest that fatty acids and amino acids may trigger molecular alterations in DAM and DAA. Combining network-based prediction and retrospective case-control observations with 7.2 million individuals, we identify that usage of fluticasone (an approved glucocorticoid receptor agonist) is significantly associated with a reduced incidence of AD (hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.83-0.89, P < 1.0 × 10-8). Propensity score-stratified cohort studies reveal that usage of mometasone (a stronger glucocorticoid receptor agonist) is significantly associated with a decreased risk of AD (HR = 0.74, 95% CI 0.68-0.81, P < 1.0 × 10-8) compared to fluticasone after adjusting age, gender, and disease comorbidities. In summary, we present a network-based, multimodal methodology for single-cell/nucleus genomics-informed drug discovery and have identified fluticasone and mometasone as potential treatments in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Astrócitos/metabolismo , Análise de Dados , Reposicionamento de Medicamentos , Humanos , Camundongos , Microglia/metabolismo , Estudos Retrospectivos , Análise de Sequência de RNA
3.
J Immunol ; 208(10): 2283-2299, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35523454

RESUMO

Alzheimer's disease (AD) has been linked to multiple immune system-related genetic variants. Triggering receptor expressed on myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. In addition, soluble TREM2 (sTREM2) isoform is elevated in cerebrospinal fluid in the early stages of AD and is associated with slower cognitive decline in a disease stage-dependent manner. Multiple studies have reported an altered peripheral immune response in AD. However, less is known about the relationship between peripheral sTREM2 and an altered peripheral immune response in AD. The objective of this study was to explore the relationship between human plasma sTREM2 and inflammatory activity in AD. The hypothesis of this exploratory study was that sTREM2-related inflammatory activity differs by AD stage. We observed different patterns of inflammatory activity across AD stages that implicate early-stage alterations in peripheral sTREM2-related inflammatory activity in AD. Notably, fractalkine showed a significant relationship with sTREM2 across different analyses in the control groups that was lost in later AD-related stages with high levels in mild cognitive impairment. Although multiple other inflammatory factors either differed significantly between groups or were significantly correlated with sTREM2 within specific groups, three inflammatory factors (fibroblast growth factor-2, GM-CSF, and IL-1ß) are notable because they exhibited both lower levels in AD, compared with mild cognitive impairment, and a change in the relationship with sTREM2. This evidence provides important support to the hypothesis that sTREM2-related inflammatory activity alterations are AD stage specific and provides critical information for therapeutic strategies focused on the immune response.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Biomarcadores , Humanos
4.
PLoS Biol ; 18(11): e3000970, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33156843

RESUMO

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of coexisting medical conditions, while the underlying mechanisms remain unclear. Furthermore, there are no approved therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, disease manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measurement revealed underlying pathogenesis for broad COVID-19-associated disease manifestations. Analyses of single-cell RNA sequencing data show that co-expression of ACE2 and TMPRSS2 is elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn disease patients compared to uninflamed tissues, revealing shared pathobiology between COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicate that COVID-19 shares an intermediate inflammatory molecular profile with asthma (including IRAK3 and ADRB2). To prioritize potential treatments, we combined network-based prediction and a propensity score (PS) matching observational study of 26,779 individuals from a COVID-19 registry. We identified that melatonin usage (odds ratio [OR] = 0.72, 95% CI 0.56-0.91) is significantly associated with a 28% reduced likelihood of a positive laboratory test result for SARS-CoV-2 confirmed by reverse transcription-polymerase chain reaction assay. Using a PS matching user active comparator design, we determined that melatonin usage was associated with a reduced likelihood of SARS-CoV-2 positive test result compared to use of angiotensin II receptor blockers (OR = 0.70, 95% CI 0.54-0.92) or angiotensin-converting enzyme inhibitors (OR = 0.69, 95% CI 0.52-0.90). Importantly, melatonin usage (OR = 0.48, 95% CI 0.31-0.75) is associated with a 52% reduced likelihood of a positive laboratory test result for SARS-CoV-2 in African Americans after adjusting for age, sex, race, smoking history, and various disease comorbidities using PS matching. In summary, this study presents an integrative network medicine platform for predicting disease manifestations associated with COVID-19 and identifying melatonin for potential prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Melatonina/administração & dosagem , Antagonistas de Receptores de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Conjuntos de Dados como Assunto , Interações Hospedeiro-Patógeno/genética , Humanos , Pandemias , Transcriptoma
5.
Plant Cell Physiol ; 63(4): 565-572, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35024864

RESUMO

Global gene co-expression networks (GCNs) are powerful tools for functional genomics whereby putative functions and regulatory mechanisms can be inferred by gene co-expression. Cereal crops, such as Hordeum vulgare (barley) and Sorghum bicolor (sorghum), are among the most important plants to civilization. However, co-expression network tools for these plants are lacking. Here, we have constructed global GCNs for barley and sorghum using existing RNA-seq data sets. Meta-information was manually curated and categorized by tissue type to also build tissue-specific GCNs. To enable GCN searching and visualization, we implemented a website and database named PlantNexus. PlantNexus is freely available at https://plantnexus.ohio.edu/.


Assuntos
Hordeum , Sorghum , Grão Comestível/genética , Redes Reguladoras de Genes , Genômica , Hordeum/genética , Sorghum/genética
6.
PLoS Med ; 18(8): e1003736, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34339408

RESUMO

BACKGROUND: Cardiovascular disease is a leading cause of death in general population and the second leading cause of mortality and morbidity in cancer survivors after recurrent malignancy in the United States. The growing awareness of cancer therapy-related cardiac dysfunction (CTRCD) has led to an emerging field of cardio-oncology; yet, there is limited knowledge on how to predict which patients will experience adverse cardiac outcomes. We aimed to perform unbiased cardiac risk stratification for cancer patients using our large-scale, institutional electronic medical records. METHODS AND FINDINGS: We built a large longitudinal (up to 22 years' follow-up from March 1997 to January 2019) cardio-oncology cohort having 4,632 cancer patients in Cleveland Clinic with 5 diagnosed cardiac outcomes: atrial fibrillation, coronary artery disease, heart failure, myocardial infarction, and stroke. The entire population includes 84% white Americans and 11% black Americans, and 59% females versus 41% males, with median age of 63 (interquartile range [IQR]: 54 to 71) years old. We utilized a topology-based K-means clustering approach for unbiased patient-patient network analyses of data from general demographics, echocardiogram (over 25,000), lab testing, and cardiac factors (cardiac). We performed hazard ratio (HR) and Kaplan-Meier analyses to identify clinically actionable variables. All confounding factors were adjusted by Cox regression models. We performed random-split and time-split training-test validation for our model. We identified 4 clinically relevant subgroups that are significantly correlated with incidence of cardiac outcomes and mortality. Among the 4 subgroups, subgroup I (n = 625) has the highest risk of de novo CTRCD (28%) with an HR of 3.05 (95% confidence interval (CI) 2.51 to 3.72). Patients in subgroup IV (n = 1,250) had the worst survival probability (HR 4.32, 95% CI 3.82 to 4.88). From longitudinal patient-patient network analyses, the patients in subgroup I had a higher percentage of de novo CTRCD and a worse mortality within 5 years after the initiation of cancer therapies compared to long-time exposure (6 to 20 years). Using clinical variable network analyses, we identified that serum levels of NT-proB-type Natriuretic Peptide (NT-proBNP) and Troponin T are significantly correlated with patient's mortality (NT-proBNP > 900 pg/mL versus NT-proBNP = 0 to 125 pg/mL, HR = 2.95, 95% CI 2.28 to 3.82, p < 0.001; Troponin T > 0.05 µg/L versus Troponin T ≤ 0.01 µg/L, HR = 2.08, 95% CI 1.83 to 2.34, p < 0.001). Study limitations include lack of independent cardio-oncology cohorts from different healthcare systems to evaluate the generalizability of the models. Meanwhile, the confounding factors, such as multiple medication usages, may influence the findings. CONCLUSIONS: In this study, we demonstrated that the patient-patient network clustering methodology is clinically intuitive, and it allows more rapid identification of cancer survivors that are at greater risk of cardiac dysfunction. We believed that this study holds great promise for identifying novel cardiac risk subgroups and clinically actionable variables for the development of precision cardio-oncology.


Assuntos
Fibrilação Atrial/epidemiologia , Doença da Artéria Coronariana/epidemiologia , Insuficiência Cardíaca/epidemiologia , Infarto do Miocárdio/epidemiologia , Neoplasias/complicações , Medição de Risco , Acidente Vascular Cerebral/epidemiologia , Idoso , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Ohio/epidemiologia
7.
PLoS Comput Biol ; 16(2): e1007701, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32101536

RESUMO

Tumor-specific genomic alterations allow systematic identification of genetic interactions that promote tumorigenesis and tumor vulnerabilities, offering novel strategies for development of targeted therapies for individual patients. We develop an Individualized Network-based Co-Mutation (INCM) methodology by inspecting over 2.5 million nonsynonymous somatic mutations derived from 6,789 tumor exomes across 14 cancer types from The Cancer Genome Atlas. Our INCM analysis reveals a higher genetic interaction burden on the significantly mutated genes, experimentally validated cancer genes, chromosome regulatory factors, and DNA damage repair genes, as compared to human pan-cancer essential genes identified by CRISPR-Cas9 screenings on 324 cancer cell lines. We find that genes involved in the cancer type-specific genetic subnetworks identified by INCM are significantly enriched in established cancer pathways, and the INCM-inferred putative genetic interactions are correlated with patient survival. By analyzing drug pharmacogenomics profiles from the Genomics of Drug Sensitivity in Cancer database, we show that the network-predicted putative genetic interactions (e.g., BRCA2-TP53) are significantly correlated with sensitivity/resistance of multiple therapeutic agents. We experimentally validated that afatinib has the strongest cytotoxic activity on BT474 (IC50 = 55.5 nM, BRCA2 and TP53 co-mutant) compared to MCF7 (IC50 = 7.7 µM, both BRCA2 and TP53 wild type) and MDA-MB-231 (IC50 = 7.9 µM, BRCA2 wild type but TP53 mutant). Finally, drug-target network analysis reveals several potential druggable genetic interactions by targeting tumor vulnerabilities. This study offers a powerful network-based methodology for identification of candidate therapeutic pathways that target tumor vulnerabilities and prioritization of potential pharmacogenomics biomarkers for development of personalized cancer medicine.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Neoplasias/genética , Antineoplásicos/uso terapêutico , Proteína BRCA2/genética , Biomarcadores Tumorais , Sistemas CRISPR-Cas , Carcinogênese , Linhagem Celular Tumoral , Exoma , Testes Genéticos , Genômica , Humanos , Concentração Inibidora 50 , Modelos Teóricos , Mutação , Neoplasias/tratamento farmacológico , Farmacogenética , Medicina de Precisão , Mapeamento de Interação de Proteínas , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética
8.
Brain ; 143(7): 2106-2118, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568404

RESUMO

Cytogenic testing is routinely applied in most neurological centres for severe paediatric epilepsies. However, which characteristics of copy number variants (CNVs) confer most epilepsy risk and which epilepsy subtypes carry the most CNV burden, have not been explored on a genome-wide scale. Here, we present the largest CNV investigation in epilepsy to date with 10 712 European epilepsy cases and 6746 ancestry-matched controls. Patients with genetic generalized epilepsy, lesional focal epilepsy, non-acquired focal epilepsy, and developmental and epileptic encephalopathy were included. All samples were processed with the same technology and analysis pipeline. All investigated epilepsy types, including lesional focal epilepsy patients, showed an increase in CNV burden in at least one tested category compared to controls. However, we observed striking differences in CNV burden across epilepsy types and investigated CNV categories. Genetic generalized epilepsy patients have the highest CNV burden in all categories tested, followed by developmental and epileptic encephalopathy patients. Both epilepsy types also show association for deletions covering genes intolerant for truncating variants. Genome-wide CNV breakpoint association showed not only significant loci for genetic generalized and developmental and epileptic encephalopathy patients but also for lesional focal epilepsy patients. With a 34-fold risk for developing genetic generalized epilepsy, we show for the first time that the established epilepsy-associated 15q13.3 deletion represents the strongest risk CNV for genetic generalized epilepsy across the whole genome. Using the human interactome, we examined the largest connected component of the genes overlapped by CNVs in the four epilepsy types. We observed that genetic generalized epilepsy and non-acquired focal epilepsy formed disease modules. In summary, we show that in all common epilepsy types, 1.5-3% of patients carry epilepsy-associated CNVs. The characteristics of risk CNVs vary tremendously across and within epilepsy types. Thus, we advocate genome-wide genomic testing to identify all disease-associated types of CNVs.


Assuntos
Variações do Número de Cópias de DNA/genética , Epilepsia/genética , Predisposição Genética para Doença/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
9.
J Proteome Res ; 19(11): 4624-4636, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32654489

RESUMO

There have been more than 2.2 million confirmed cases and over 120 000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, there is currently a lack of proven effective medications against COVID-19. Drug repurposing offers a promising route for the development of prevention and treatment strategies for COVID-19. This study reports an integrative, network-based deep-learning methodology to identify repurposable drugs for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, diseases, proteins/genes, pathways, and expression from a large scientific corpus of 24 million PubMed publications. Using Amazon's AWS computing resources and a network-based, deep-learning framework, we identified 41 repurposable drugs (including dexamethasone, indomethacin, niclosamide, and toremifene) whose therapeutic associations with COVID-19 were validated by transcriptomic and proteomics data in SARS-CoV-2-infected human cells and data from ongoing clinical trials. Whereas this study by no means recommends specific drugs, it demonstrates a powerful deep-learning methodology to prioritize existing drugs for further investigation, which holds the potential to accelerate therapeutic development for COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Aprendizado Profundo , Reposicionamento de Medicamentos/métodos , Pandemias , Pneumonia Viral , Antivirais , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Proteoma , SARS-CoV-2 , Transcriptoma
10.
Bioinformatics ; 35(24): 5191-5198, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31116390

RESUMO

MOTIVATION: Traditional drug discovery and development are often time-consuming and high risk. Repurposing/repositioning of approved drugs offers a relatively low-cost and high-efficiency approach toward rapid development of efficacious treatments. The emergence of large-scale, heterogeneous biological networks has offered unprecedented opportunities for developing in silico drug repositioning approaches. However, capturing highly non-linear, heterogeneous network structures by most existing approaches for drug repositioning has been challenging. RESULTS: In this study, we developed a network-based deep-learning approach, termed deepDR, for in silico drug repurposing by integrating 10 networks: one drug-disease, one drug-side-effect, one drug-target and seven drug-drug networks. Specifically, deepDR learns high-level features of drugs from the heterogeneous networks by a multi-modal deep autoencoder. Then the learned low-dimensional representation of drugs together with clinically reported drug-disease pairs are encoded and decoded collectively via a variational autoencoder to infer candidates for approved drugs for which they were not originally approved. We found that deepDR revealed high performance [the area under receiver operating characteristic curve (AUROC) = 0.908], outperforming conventional network-based or machine learning-based approaches. Importantly, deepDR-predicted drug-disease associations were validated by the ClinicalTrials.gov database (AUROC = 0.826) and we showcased several novel deepDR-predicted approved drugs for Alzheimer's disease (e.g. risperidone and aripiprazole) and Parkinson's disease (e.g. methylphenidate and pergolide). AVAILABILITY AND IMPLEMENTATION: Source code and data can be downloaded from https://github.com/ChengF-Lab/deepDR. SUPPLEMENTARY INFORMATION: Supplementary data are available online at Bioinformatics.


Assuntos
Aprendizado Profundo , Reposicionamento de Medicamentos , Biologia Computacional , Simulação por Computador , Software
11.
PLoS Comput Biol ; 15(2): e1006772, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779739

RESUMO

Recent advances in next-generation sequencing and computational technologies have enabled routine analysis of large-scale single-cell ribonucleic acid sequencing (scRNA-seq) data. However, scRNA-seq technologies have suffered from several technical challenges, including low mean expression levels in most genes and higher frequencies of missing data than bulk population sequencing technologies. Identifying functional gene sets and their regulatory networks that link specific cell types to human diseases and therapeutics from scRNA-seq profiles are daunting tasks. In this study, we developed a Component Overlapping Attribute Clustering (COAC) algorithm to perform the localized (cell subpopulation) gene co-expression network analysis from large-scale scRNA-seq profiles. Gene subnetworks that represent specific gene co-expression patterns are inferred from the components of a decomposed matrix of scRNA-seq profiles. We showed that single-cell gene subnetworks identified by COAC from multiple time points within cell phases can be used for cell type identification with high accuracy (83%). In addition, COAC-inferred subnetworks from melanoma patients' scRNA-seq profiles are highly correlated with survival rate from The Cancer Genome Atlas (TCGA). Moreover, the localized gene subnetworks identified by COAC from individual patients' scRNA-seq data can be used as pharmacogenomics biomarkers to predict drug responses (The area under the receiver operating characteristic curves ranges from 0.728 to 0.783) in cancer cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) database. In summary, COAC offers a powerful tool to identify potential network-based diagnostic and pharmacogenomics biomarkers from large-scale scRNA-seq profiles. COAC is freely available at https://github.com/ChengF-Lab/COAC.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Sequência de Bases/genética , Análise por Conglomerados , Análise de Dados , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , RNA Citoplasmático Pequeno/genética , Curva ROC , Software
12.
J Chem Inf Model ; 59(3): 1073-1084, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30715873

RESUMO

Blockade of the human ether-à-go-go-related gene (hERG) channel by small molecules induces the prolongation of the QT interval which leads to fatal cardiotoxicity and accounts for the withdrawal or severe restrictions on the use of many approved drugs. In this study, we develop a deep learning approach, termed deephERG, for prediction of hERG blockers of small molecules in drug discovery and postmarketing surveillance. In total, we assemble 7,889 compounds with well-defined experimental data on the hERG and with diverse chemical structures. We find that deephERG models built by a multitask deep neural network (DNN) algorithm outperform those built by single-task DNN, naïve Bayes (NB), support vector machine (SVM), random forest (RF), and graph convolutional neural network (GCNN). Specifically, the area under the receiver operating characteristic curve (AUC) value for the best model of deephERG is 0.967 on the validation set. Furthermore, based on 1,824 U.S. Food and Drug Administration (FDA) approved drugs, 29.6% drugs are computationally identified to have potential hERG inhibitory activities by deephERG, highlighting the importance of hERG risk assessment in early drug discovery. Finally, we showcase several novel predicted hERG blockers on approved antineoplastic agents, which are validated by clinical case reports, experimental evidence, and the literature. In summary, this study presents a powerful deep learning-based tool for risk assessment of hERG-mediated cardiotoxicities in drug discovery and postmarketing surveillance.


Assuntos
Cardiotoxicidade , Biologia Computacional/métodos , Aprendizado Profundo , Antineoplásicos/efeitos adversos , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Medição de Risco
13.
J Chem Inf Model ; 59(3): 1005-1016, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30586300

RESUMO

Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure-activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.


Assuntos
Aprendizado Profundo , Descoberta de Drogas/métodos , Absorção Fisico-Química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Relação Quantitativa Estrutura-Atividade
15.
J Microbiol Biotechnol ; 34(2): 330-339, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38073331

RESUMO

Corn cobs were fermented with Aspergillus niger to produce soluble dietary fiber (SDF) of high quality and excellent food safety. In this work, the fermentation process was optimized by single-factor test and response surface methodology (RSM). The optimal fermentation conditions were determined to be a material-liquid ratio of 1:30, an inoculum concentration of 11%, a temperature of 32°C, a time of 6 days, and a shaking speed of 200 r/min. Under these conditions, the SDF yield of corn cob increased from 2.34% to 11.92%, and the ratio of soluble dietary fiber to total dietary fiber (SDF/TDF) reached 19.08%, meeting the requirements for high-quality dietary fiber (SDF/TDF of more than 10%). Scanning electron microscopy (SEM) and Fourier-transformed infrared spectroscopy (FT-IR) analysis revealed that the fermentation effectively degraded part of cellulose and hemicellulose, resulting in the formation of a loose and porous structure. After fermentation the water swelling capacity, water-holding capacity, and oil-holding capacity of the corn cob SDF were significantly improved and the adsorption capacity of glucose, cholesterol, and nitrite ions all increased by more than 20%. Moreover, the total phenolic content increased by 20.96%, which correlated with the higher antioxidant activity of SDF. Overall, the fermentation of corn cobs by A. niger increased the yield and enhanced the functional properties of dietary fiber (DF) as well.


Assuntos
Aspergillus niger , Zea mays , Zea mays/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Fibras na Dieta/metabolismo , Água
16.
Alzheimers Dement (N Y) ; 10(2): e12465, 2024.
Artigo em Holandês | MEDLINE | ID: mdl-38659717

RESUMO

INTRODUCTION: New therapies to prevent or delay the onset of symptoms, slow progression, or improve cognitive and behavioral symptoms of Alzheimer's disease (AD) are needed. METHODS: We interrogated clinicaltrials.gov including all clinical trials assessing pharmaceutical therapies for AD active in on January 1, 2024. We used the Common Alzheimer's Disease Research Ontology (CADRO) to classify the targets of therapies in the pipeline. RESULTS: There are 164 trials assessing 127 drugs across the 2024 AD pipeline. There were 48 trials in Phase 3 testing 32 drugs, 90 trials in Phase 2 assessing 81 drugs, and 26 trials in Phase 1 testing 25 agents. Of the 164 trials, 34% (N = 56) assess disease-modifying biological agents, 41% (N = 68) test disease-modifying small molecule drugs, 10% (N = 17) evaluate cognitive enhancing agents, and 14% (N = 23) test drugs for the treatment of neuropsychiatric symptoms. DISCUSSION: Compared to the 2023 pipeline, there are fewer trials (164 vs. 187), fewer drugs (127 vs. 141), fewer new chemical entities (88 vs. 101), and a similar number of repurposed agents (39 vs. 40). Highlights: In the 2024 Alzheimer's disease drug development pipeline, there are 164 clinical trials assessing 127 drugs.The 2024 Alzheimer's disease drug development pipeline has contracted compared to the 2023 Alzheimer pipeline with fewer trials, fewer drugs, and fewer new chemical entities.Drugs in the Alzheimer's disease drug development pipeline target a wide array of targets; the most common processes targeted include neurotransmitter receptors, inflammation, amyloid, and synaptic plasticity.The total development time for a potential Alzheimer's disease therapy to progress from nonclinical studies to FDA review is approximately 13 years.

17.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162909

RESUMO

Human genome sequencing studies have identified numerous loci associated with complex diseases. However, translating human genetic and genomic findings to disease pathobiology and therapeutic discovery remains a major challenge at multiscale interactome network levels. Here, we present a deep-learning-based ensemble framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that accurately predicts protein binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms, generating comprehensive structurally-informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods. We further systematically validated PIONEER predictions experimentally through generating 2,395 mutations and testing their impact on 6,754 mutation-interaction pairs, confirming the high quality and validity of PIONEER predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces after mapping mutations from ~60,000 germline exomes and ~36,000 somatic genomes. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from pan-cancer analysis of ~11,000 tumor whole-exomes across 33 cancer types. We show that PIONEER-predicted oncoPPIs are significantly associated with patient survival and drug responses from both cancer cell lines and patient-derived xenograft mouse models. We identify a landscape of PPI-perturbing tumor alleles upon ubiquitination by E3 ligases, and we experimentally validate the tumorigenic KEAP1-NRF2 interface mutation p.Thr80Lys in non-small cell lung cancer. We show that PIONEER-predicted PPI-perturbing alleles alter protein abundance and correlates with drug responses and patient survival in colon and uterine cancers as demonstrated by proteogenomic data from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.

18.
Cell Rep Med ; 5(2): 101379, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382465

RESUMO

The high failure rate of clinical trials in Alzheimer's disease (AD) and AD-related dementia (ADRD) is due to a lack of understanding of the pathophysiology of disease, and this deficit may be addressed by applying artificial intelligence (AI) to "big data" to rapidly and effectively expand therapeutic development efforts. Recent accelerations in computing power and availability of big data, including electronic health records and multi-omics profiles, have converged to provide opportunities for scientific discovery and treatment development. Here, we review the potential utility of applying AI approaches to big data for discovery of disease-modifying medicines for AD/ADRD. We illustrate how AI tools can be applied to the AD/ADRD drug development pipeline through collaborative efforts among neurologists, gerontologists, geneticists, pharmacologists, medicinal chemists, and computational scientists. AI and open data science expedite drug discovery and development of disease-modifying therapeutics for AD/ADRD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Inteligência Artificial , Desenvolvimento de Medicamentos , Descoberta de Drogas , Registros Eletrônicos de Saúde
19.
Cell Rep ; 43(5): 114128, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38652661

RESUMO

Shifts in the magnitude and nature of gut microbial metabolites have been implicated in Alzheimer's disease (AD), but the host receptors that sense and respond to these metabolites are largely unknown. Here, we develop a systems biology framework that integrates machine learning and multi-omics to identify molecular relationships of gut microbial metabolites with non-olfactory G-protein-coupled receptors (termed the "GPCRome"). We evaluate 1.09 million metabolite-protein pairs connecting 408 human GPCRs and 335 gut microbial metabolites. Using genetics-derived Mendelian randomization and integrative analyses of human brain transcriptomic and proteomic profiles, we identify orphan GPCRs (i.e., GPR84) as potential drug targets in AD and that triacanthine experimentally activates GPR84. We demonstrate that phenethylamine and agmatine significantly reduce tau hyperphosphorylation (p-tau181 and p-tau205) in AD patient induced pluripotent stem cell-derived neurons. This study demonstrates a systems biology framework to uncover the GPCR targets of human gut microbiota in AD and other complex diseases if broadly applied.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Receptores Acoplados a Proteínas G , Doença de Alzheimer/metabolismo , Doença de Alzheimer/microbiologia , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas tau/metabolismo , Proteômica/métodos , Fosforilação , Encéfalo/metabolismo , Neurônios/metabolismo , Multiômica
20.
J Chem Inf Model ; 53(4): 744-52, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23521697

RESUMO

Adverse drug events (ADEs) are the harms associated with uses of given medications at normal dosages, which are crucial for a drug to be approved in clinical use or continue to stay on the market. Many ADEs are not identified in trials until the drug is approved for clinical use, which results in adverse morbidity and mortality. To date, millions of ADEs have been reported around the world. Methods to avoid or reduce ADEs are an important issue for drug discovery and development. Here, we reported a comprehensive database of adverse drug events (namely MetaADEDB), which included more than 520,000 drug-ADE associations among 3059 unique compounds (including 1330 drugs) and 13,200 ADE items by data integration and text mining. All compounds and ADEs were annotated with the most commonly used concepts defined in Medical Subject Headings (MeSH). Meanwhile, a computational method, namely the phenotypic network inference model (PNIM), was developed for prediction of potential ADEs based on the database. The area under the receive operating characteristic curve (AUC) is more than 0.9 by 10-fold cross validation, while the AUC value was 0.912 for an external validation set extracted from the US-FDA Adverse Events Reporting System, which indicated that the prediction capability of the method was reliable. MetaADEDB is accessible free of charge at http://www.lmmd.org/online_services/metaadedb/. The database and the method provide us a useful tool to search for known side effects or predict potential side effects for a given drug or compound.


Assuntos
Bases de Dados Factuais , Modelos Estatísticos , Medicamentos sob Prescrição/efeitos adversos , Algoritmos , Área Sob a Curva , Simulação por Computador , Mineração de Dados , Bases de Dados de Produtos Farmacêuticos , Humanos , Valor Preditivo dos Testes , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA