Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 95(12): e29318, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38112106

RESUMO

To examine the effectiveness of azvudine and nirmatrelvir-ritonavir in treating hospitalized patients with moderate-to-severe COVID-19. We emulated a target trial with a multicenter retrospective cohort of hospitalized adults with moderate-to-severe COVID-19 without contraindications for azvudine or nirmatrelvir-ritonavir between December 01, 2022 and January 19, 2023 (during the Omicron BA.5.2 variant wave). Exposures included treatment with azvudine or nirmatrelvir-ritonavir for 5 days versus no antiviral treatment during hospitalization. Primary composite outcome (all-cause death and initiation of invasive mechanical ventilation), and their separate events were evaluated. Of the 1154 patients, 27.2% were severe cases. In the intent-to-treat analyses, azvudine reduced all-cause death (Hazard ratio [HR]: 0.31; 95% CI: 0.12-0.78), and its composite with invasive mechanical ventilation (HR: 0.47; 95% CI: 0.24-0.92). Nirmatrelvir-ritonavir reduced invasive mechanical ventilation (HR: 0.42; 95% CI: 0.17-1.05), and its composite with all-cause death (HR: 0.38; 95% CI: 0.18-0.81). The study did not identify credible subgroup effects. The per-protocol analyses and all sensitivity analyses confirmed the robustness of the findings. Both azvudine and nirmatrelvir-ritonavir improved the prognosis of hospitalized adults with moderate-to-severe COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Ritonavir , Adulto , Humanos , Antivirais/uso terapêutico , Estudos Retrospectivos , Ritonavir/uso terapêutico
2.
Foods ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672879

RESUMO

Currently, food allergies are closely related to intestinal health, and ensuring the integrity and health of intestinal mucosa could reduce the incidence of food allergies. In this study, a soybean-allergic mouse model was used to explore the mechanism of intestinal mucosa immune response induced by enzyme-cross-linked tofu. The effects of enzyme-cross-linked tofu on intestinal mucosal immunity in mice were determined by hematoxylin-eosin (HE) staining and flow cytometry. Our results reveled that the MTG-cross-linked tofu reduced the reactivity of the intestinal mucosal immune system, which mainly manifested as a decrease in the dendritic cell (DC) levels of mesenteric lymph nodes (MLNs), increasing the Th1 cells and Tregs in Peyer's patch (PP) nodes and MLNs, and inhibiting the Th2 cells. Compared with soy protein, enzyme-cross-linked tofu had less damage to the small intestinal tract of mice. Therefore, the above-mentioned results fully revealed that the enzyme-cross-linked tofu promoted the transformation of intestinal mucosal immune cells, shifted the Th1/Th2 balance toward Th1, and reduced its sensitization effect.

3.
J Genet Genomics ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909778

RESUMO

Oligoasthenoteratozoospermia is an important factor affecting male fertility and has been found to be associated with genetic factors. However, there are still a proportion of oligoasthenoteratozoospermia cases that cannot be explained by known pathogenic genetic variants. Here, we perform genetic analyses and identify bi-allelic loss-of-function variants of MFSD6L from an oligoasthenoteratozoospermia-affected family. Mfsd6l knock-out male mice also present male subfertility with reduced sperm concentration, motility, and deformed acrosomes. Further mechanistic analyses reveal that MFSD6L, as an acrosome membrane protein, plays an important role in the formation of acrosome by interacting with the inner acrosomal membrane protein SPACA1. Moreover, poor embryonic development is consistently observed after intracytoplasmic sperm injection treatment using spermatozoa from the MFSD6L-deficient man and male mice. Collectively, our findings reveal that MFSD6L is required for the anchoring of sperm acrosome and head shaping. The deficiency of MFSD6L affects male fertility and causes oligoasthenoteratozoospermia in humans and mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA