Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; : e2309932, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295134

RESUMO

Recently, zeolitic imidazolate frameworks (ZIFs) composites have emerged as promising precursors for synthesizing hollow-structured N-doped carbon-based noble-metal materials with diverse structures and compositions. Here, a strong/weak competitive coordination strategy is presented for synthesizing high-performance electrocatalysts with hollow features. During the competitive coordination process, the cubic zeolitic-imidazole framework-8 (Cube-8)@ZIF-67 with core-shell structures are transformed into Cube-8@ZIF-67@PF/POM with yolk-shell nanostructures employing phosphomolybdic acid (POM) and potassium ferricyanide (PF) as the strong chelator and the weak chelator, respectively. After calcination, the hollow Mo/Fe/Co@NC catalyst exhibits superior performance in both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Interestingly, the Mo/Fe/Co@NC catalyst exhibits efficient electrocatalytic performance for Zn-air batteries (ZABs), with a high power density (≈150 mW cm-2 ) and superior cycling life (≈500 h) compared to commercial platinum/carbon (Pt/C) and ruthenium dioxide (RuO2 ) mixture benchmarks catalysts. In addition, the density functional theory further proves that after the introduction of Mo and Fe atoms, the adsorption energy with the adsorption intermediates is weakened by adjusting the d-band center, thus weakening the reaction barrier and promoting the reaction kinetics of OER. Undoubtedly, this study presents novel insights into the fabrication of ZIFs-derived hollow structure bifunctional oxygen electrocatalysts for clean-energy diverse applications.

2.
Angew Chem Int Ed Engl ; 63(2): e202313434, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37996973

RESUMO

The development of environmentally sustainable and highly efficient technologies for ammonia production is crucial for the future advancement of carbon-neutral energy systems. The nitrite reduction reaction (NO2 RR) for generating NH3 is a promising alternative to the low-efficiency nitrogen reduction reaction (NRR), owing to the low N=O bond energy and high solubility of nitrite. In this study, we designed a highly efficient dual-atom catalyst with Fe-Cu atomic pair sites (termed FeCu DAC), and the as-developed FeCu DAC was able to afford a remarkable NH3 yield of 24,526 µg h-1 mgcat. -1 at -0.6 V, with a Faradaic Efficiency (FE) for NH3 production of 99.88 %. The FeCu DAC also exhibited exceptional catalytic activity and selectivity in a Zn-NO2 battery, achieving a record-breaking power density of 23.6 mW cm-2 and maximum NH3 FE of 92.23 % at 20 mA cm-2 . Theoretical simulation demonstrated that the incorporation of the Cu atom changed the energy of the Fe 3d orbital and lowered the energy barrier, thereby accelerating the NO2 RR. This study not only demonstrates the potential of galvanic nitrite-based cells for expanding the field of Zn-based batteries, but also provides fundamental interpretation for the synergistic effect in highly dispersed dual-atom catalysts.

3.
Angew Chem Int Ed Engl ; 63(11): e202319741, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38196288

RESUMO

Spatially confined photocatalysis has emerged as a viable strategy for the intensification of various redox reactions, but the influence of confined structure on reaction behavior is always overlooked in gas-solid reactions. Herein, we report a nanomembrane with confining Cs3 Bi2 Br9 nanocrystals inside vertical channels of porous insulated silica thin sheets (CBB@SBA(⊥)) for photocatalytic nitric oxide (NO) abatement. The ordered one-dimensional (1D) pore channels with mere 70 nm channel length provide a highly accessible confined space for catalytic reactions. A record-breaking NO conversion efficiency of 98.2 % under a weight hourly space velocity (WHSV) of 3.0×106  mL g-1 h-1 , as well as exceptionally high stability over 14 h and durability over a wide humidity range (RH=15-90 %) was realized over SBA(⊥) confined Cs3 Bi2 Br9 , well beyond its nonconfined analogue and the Cs3 Bi2 Br9 confine in Santa Barbara Amorphous (SBA-15). Mechanism studies suggested that the insulated pore channels of SBA(⊥) in CBB@SBA(⊥) endow concentrated electron field and enhanced mass transfer that render high exposure of reactive species and lower reaction barrier needs for ⋅O2 - formation and NO oxidation, as well as prevents structural degradation of Cs3 Bi2 Br9 . This work expands an innovative strategy for designing efficient photocatalysts for air pollution remediation.

4.
Small ; 19(49): e2304854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548123

RESUMO

Simultaneously achieving high activity for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the key to constructing rechargeable Zn-air batteries (ZABs). Here the complexation of 1,10-phenanthroline and the spatial confinement effect of closo-[B12 H12 ]2- are used to solidify metal-boron-cluster-organic-polymers on the surface of SiO2 microspheres to construct a bifunctional oxygen electrocatalyst (FeBCN/NHCS). Driven by FeBCN/NHCS, the half-wave-potential of ORR surpasses that of the Pt/C catalyst, reaching 0.893 V versus RHE, and the overpotential (η10 ) of OER is as low as 361 mV. The ZABs of FeBCN/NHCS as an air cathode not only have high power density and specific capacity, but also have charge-discharge durability. The FeBCN/NHCS is not only related to the high specific surface area, but also the high exposure rate of single-atom Fe and the doping of heteroatom B. This study provides an efficient oxygen electrocatalyst and also contributes wisdom to the acquisition of highly active oxygen electrocatalyst.

5.
Small ; 19(43): e2300673, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376842

RESUMO

Urea oxidation reaction (UOR) is one of the promising alternative anodic reactions to water oxidation that has attracted extensive attention in green hydrogen production. The application of specifically designed electrocatalysts capable of declining energy consumption and environmental consequences is one of the major challenges in this field. Therefore, the goal is to achieve a resistant, low-cost, and environmentally friendly electrocatalyst. Herein, a water-stable fluorinated Cu(II) metalorganic framework (MOF) {[Cu2 (L)(H2 O)2 ]·(5DMF)(4H2 O)}n (Cu-FMOF-NH2 ; H4 L = 3,5-bis(2,4-dicarboxylic acid)-4-(trifluoromethyl)aniline) is developed utilizing an angular tetracarboxylic acid ligand that incorporates both trifluoromethyl (-CF3 ) and amine (-NH2 ) groups. The tailored structure of Cu-FMOF-NH2 where linkers are connected by fluoride bridges and surrounded by dicopper nodes reveals a 4,24T1 topology. When employed as electrocatalyst, Cu-FMOF-NH2 requires only 1.31 V versus reversible hydrogen electrode (RHE) to deliver 10 mA cm-2 current density in 1.0 m KOH with 0.33 m urea electrolyte and delivered an even higher current density (50 mA cm-2 ) at 1.47 V versus RHE. This performance is superior to several reported catalysts including commercial RuO2 catalyst with overpotential of 1.52 V versus RHE. This investigation opens new opportunities to develop and utilize pristine MOFs as a potential electrocatalyst for various catalytic reactions.

6.
Phys Chem Chem Phys ; 25(37): 25353-25360, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703044

RESUMO

Photocatalytic oxidation is an efficient and promising technology for reducing indoor pollution levels of formaldehyde (HCHO). However, developing efficient and low-cost photocatalysts for the removal of HCHO remains challenging due to the time-consuming and expensive nature of traditional "trial and error" and "directed research" approaches. To achieve this goal, first-principles density functional theory (DFT) calculations were conducted to high-throughput screen candidate TM-C3N6 photocatalysts for high-performance degradation of HCHO. The results revealed that Zr-C3N6 and Hf-C3N6 in functionalizing C3N6 with 28 transition metals showed excellent adsorption energy of HCHO, boosting the highly effective capture of HCHO. Meanwhile, an excellent adsorption performance mechanism was further elicited by the electric structure-property relationship. In addition, reaction mechanisms for HCHO degradation and three potential reaction pathways for HCHO degradation were systematically evaluated. Our findings indicated that hydroxyl-assisted dehydrogenation and oxygen-assisted dehydrogenation are the most favorable pathways, with rate-limiting steps involving the formation of ˙OH and ˙O radicals. Overall, this study may provide new insights into a high-throughput screening of novel photocatalysts that are both high-performing and low-cost for the removal of formaldehyde. This, in turn, can accelerate the experimental development process and reduce the associated costs and time consumption.

7.
Phys Chem Chem Phys ; 24(43): 26776-26784, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314447

RESUMO

To rapidly design nitrogen reduction reaction (NRR) electrocatalysts with superior activity and selectivity is a great challenge. Herein, we propose a simple mixture strategy including three screening steps and a descriptor to predict NRR electrocatalysts with outstanding activity and selectivity based on density functional theory (DFT). Twenty-eight candidate transition-metal dimers anchored on nitrogen-doped graphene were systematically investigated through our mixture strategy. The results show that VRu-NC exhibits a high NRR activity and suppression of the competitive hydrogen evolution reaction (HER) following the mixed mechanism with a favorable limiting potential (UL) of -0.21 V. Finally, the mechanism of the catalytic reaction pathway was investigated according to the profile of atomic orbitals and electronic properties. This work proposes a feasible strategy for rapid screening of the high-performance of double atomic electrocatalysts with excellent activity and selectivity for the NRR.

8.
Bioorg Chem ; 120: 105596, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051709

RESUMO

Histone lysine specific demethylase 1 (LSD1) is a promising new therapeutic target for cancer therapy. Following the work on the discovery of natural LSD1 inhibitor higenamine, we herein performed further structure-based design, synthesis, and extensive structure-activity relationship (SAR) studies, affording structurally new spirooxindole derivatives. Particularly, FY-56 was identified to be a highly potent LSD1 inhibitor (IC50 = 42 nM) and showed high selectivity over monoamine oxidases (MAO-A/B). Mechanistic studies showed that FY-56 moderately inhibited the proliferation and clone formation of leukemia cells, induced H3K4me1/2 accumulation and p53 activation as well as reduced the mRNA levels of the transcription factors HOXA9 and MEIS1. Meanwhile, FY-56 induced differentiation of MOLM-13 and MV4-11 cells, accompanied by an enhanced percentage of markers characteristic to differentiated macrophages and monocytes. Further in vivo studies showed that FY-56 obviously reduced the proportion of CD45+/CD33+ leukocytes in peripheral blood and spleen, and significantly prolonged the survival rate of mice. Collectively, FY-56 represents a structurally novel, highly potent and selective LSD1 inhibitor and exhibits therapeutic promise for AML treatment. The spirooxindole scaffold derived from FY-56 could be used to design structurally new LSD1 inhibitors for treating human diseases.


Assuntos
Produtos Biológicos , Leucemia Mieloide Aguda , Animais , Produtos Biológicos/uso terapêutico , Inibidores Enzimáticos , Histona Desmetilases , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Relação Estrutura-Atividade
9.
J Nanobiotechnology ; 20(1): 380, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986268

RESUMO

Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.


Assuntos
Imunidade Inata , Moléculas com Motivos Associados a Patógenos , Adjuvantes Imunológicos , Sistema Imunitário , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Receptores de Reconhecimento de Padrão
10.
Mater Horiz ; 11(11): 2545-2571, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445393

RESUMO

Over the past few decades, the global reliance on fossil fuels and the exponential growth of human population have escalated global energy consumption and environmental issues. To tackle these dual challenges, metal catalysts, in particular precious metal ones, have emerged as pivotal players in the fields of environment and energy. Among the numerous metal-free and organic catalyst materials, C3N5-based materials have a major advantage over their carbon nitride (CxNy) counterparts owing to the abundant availability of raw materials, non-toxicity, non-hazardous nature, and exceptional performance. Although significant efforts have been dedicated to synthesising and optimising the applicable properties of C3N5-based materials in recent years, a comprehensive summary of the immediate parameters of this promising material is still lacking. Given the rapid development of C3N5-based materials, a timely review is essential for staying updated on their strengths and weaknesses across various applications, as well as providing guidance for designing efficient catalysts. In this study, we present an extensive overview of recent advancements in C3N5-based materials, encompassing their physicochemical properties, major synthetic methods, and applications in photocatalysis, electrocatalysis, and adsorption, among others. This systematic review effectively summarises both the advantages and shortcomings associated with C3N5-based materials for energy and environmental applications, thus offering researchers focussed on CxNy-materials an in-depth understanding of those based on C3N5. Finally, considering the limitations and deficiencies of C3N5-based materials, we have proposed enhancement schemes and strategies, while presenting personal perspectives on the challenges and future directions for C3N5. Our ultimate aim is to provide valuable insights for the research community in this field.

11.
Adv Mater ; 36(4): e2306687, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649133

RESUMO

Manipulating the coordination environment of individual active sites in a precise manner remains an important challenge in electrocatalytic reactions. Herein, inspired by theoretical predictions, a facile procedure to synthesize a series of symmetry-breaking zinc metal-organic framework (Zn-MOF) catalysts with well-defined structures is presented. Benefiting from the optimized coordination microenvironment regulated by symmetry-breaking, Zn-N2 S2 -MOF exhibits the best performance of nitrogen (N2 ) reduction reaction (NRR) with NH3 yield rate of 25.07 ± 1.57 µg h-1  cm-2 and Faradaic efficiency of 44.57 ± 2.79% compared with reported Zn-based NRR catalysts. X-ray absorption near-edge structure shows that the symmetry-breaking distorts the coordination environment and modulates the delocalized electrons around the Zn sites, which favors the formation of unpaired low-valence Znδ+ , thereby facilitating the adsorption/activation of N2 . Theoretical calculations elucidate that low-valence Znδ+ in Zn-N2 S2 -MOF can effectively lower the energy barrier of potential determining step, promoting the kinetics and boosting the NRR activity. This work highlights the relationship between the precise coordination environment of metal sites and the catalytic activity, which offers insightful guidance for rationally designing high-efficiency electrocatalysts.

12.
ACS Nano ; 18(14): 9942-9957, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38552006

RESUMO

Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5%@Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.

13.
J Colloid Interface Sci ; 670: 50-60, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754331

RESUMO

The advanced oxidation process (AOPs) is playing an important role in the elimination of hazardous organic pollutants, but the development of inexpensive and highly active advanced catalysts is facing challenges. In this study, a low-cost and readily available agricultural waste resource pomelo peel-flesh (PPF) biomass was used as the basic raw material, and the uniformly dispersed small cobalt nanoparticles were effectively anchored in the biochar derived from pomelo peel-flesh (BDPPF) by impregnation adsorption/complexation combined with heat treatment. Co/BDPPF (BDPPF embedded with Co) can effectively activate peroxymonosulfate (PMS) to SO4·-, ·OH and 1O2 reactive oxygen species, and achieve nearly 100% degradation of tetracycline persistent organic pollutant. Co/BDPPF can not only degrade tetracycline efficiently in complex water environment, but also degrade most organic pollutants universally, and has long-term stability, which solves the problem of poor universality and stability of heterogeneous catalysts to a certain extent. Importantly, Co/BDPPF derived from waste biomass was also innovatively designed as the core of an integrated continuous purification device to achieve continuous purification of organic wastewater. In this study, agricultural waste resources were selected as biomass raw materials to achieve efficient capture of Co2+, and finally developed advanced AOPs catalyst with excellent performance to achieve the purification of organic wastewater. It also provides a promising solution for the preparation of simple, low-cost, large-scale production of AOPs catalysts that can be put into actual production.

14.
Adv Mater ; : e2400572, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794833

RESUMO

Beyond optimizing electronic energy levels, the modulation of the electronic spin configuration is an effective strategy, often overlooked, to boost activity and selectivity in a range of catalytic reactions, including the oxygen evolution reaction (OER). This electronic spin modulation is frequently accomplished using external magnetic fields, which makes it impractical for real applications. Herein, spin modulation is achieved by engineering Ni/MnFe2O4 heterojunctions, whose surface is reconstructed into NiOOH/MnFeOOH during the OER. NiOOH/MnFeOOH shows a high spin state of Ni, which regulates the OH- and O2 adsorption energy and enables spin alignment of oxygen intermediates. As a result, NiOOH/MnFeOOH electrocatalysts provide excellent OER performance with an overpotential of 261 mV at 10 mA cm-2. Besides, rechargeable zinc-air batteries based on Ni/MnFe2O4 show a high open circuit potential of 1.56 V and excellent stability for more than 1000 cycles. This outstanding performance is rationalized using density functional theory calculations, which show that the optimal spin state of both Ni active sites and oxygen intermediates facilitates spin-selected charge transport, optimizes the reaction kinetics, and decreases the energy barrier to the evolution of oxygen. This study provides valuable insight into spin polarization modulation by heterojunctions enabling the design of next-generation OER catalysts with boosted performance.

15.
Adv Mater ; 36(16): e2311151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182407

RESUMO

Solar-driven interfacial evaporation (SDIE) has played a pivotal role in optimizing water-energy utilization, reducing conventional power costs, and mitigating environmental impacts. The increasing emphasis on the synergistic cogeneration of water and green electricity through SDIE is particularly noteworthy. However, there is a gap of existing reviews that have focused on the mechanistic understanding of green power from water-electricity cogeneration (WEC) systems, the structure-activity relationship between efficiency of green energy utilization in WEC and material design in SDIE. Particularly, it lacks a comprehensive discussion to address the challenges faced in these areas along with potential solutions. Therefore, this review aims to comprehensively assess the progress and future perspective of green electricity from WEC systems by investigating the potential expansion of SDIE. First, it provides a comprehensive overview about material rational design, thermal management, and water transportation tunnels in SDIE. Then, it summarizes diverse energy sources utilized in the SDIE process, including steaming generation, photovoltaics, salinity gradient effect, temperature gradient effect, and piezoelectric effect. Subsequently, it explores factors that affect generated green electricity efficiency in WEC. Finally, this review proposes challenges and possible solution in the development of WEC.

16.
ACS Appl Mater Interfaces ; 16(10): 12754-12764, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38382473

RESUMO

Developing high-performance organic-inorganic ultraviolet (UV) photodetectors (PDs) has attracted considerable attention. However, this development has been hindered due to poor directional charge-transfer ratios in transport layers, excessive costs, and an ambiguous underlying mechanism. To tackle these challenges, we constructed a heterojunction of economic Mg-doped ZnO (MgZnO) nanorods and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS (P:P)] that utilizes dipole field-driven spontaneous polarization to enhance photogenerated charge kinetics. As a result, the proposed heterojunction has an improved noise equivalent power of 3.16 × 10-11 W Hz-1/2), a normalized detection rate (D*) of 8.96 × 109 jones, and external quantum efficiency comparable to other ZnO-based devices. Notably, the prepared PDs showed a photocurrent of 4.8 × 10-3 µA under a faint UV light having an intensity of 1 × 10-5 W cm-2, exceeding the performance of the most state-of-the-art ZnO-based UV sensors. The introduction of Mg into ZnO is responsible for the high performance, as it causes a lattice mismatch and distortion of the Mg-doped ZnO unit cell. It results in improved dipole movement and the creation of a dipole field, accelerating the directional electron-transfer process. Using a dipole field to manipulate the migration and transport of photogenerated carriers represents a promising approach for achieving outstanding performance in UV PDs.

17.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318803

RESUMO

A rarely discussed phenomenon in the realm of photocatalytic materials involves the presence of gradient distributed dopants and defects from the interior to the surface. This intriguing characteristic has been successfully achieved in the case of ZnS through the incorporation of atomic monovalent copper ions (Cu+) and concurrent sulfur vacancies (Vs), resulting in a photocatalyst denoted as G-CZS1-x. Through the cooperative action of these atomic Cu dopants and Vs, G-CZS1-x significantly extends its photoabsorption range to encompass the full spectrum (200-2100 nm), which improves the solar utilization ability. This alteration enhances the efficiency of charge separation and optimizes Δ(H*) (free energy of hydrogen adsorption) to approach 0 eV for the hydrogen evolution reaction (HER). It is noteworthy that both surface-exposed atomic Cu and Vs act as active sites for photocatalysis. G-CZS1-x exhibits a significant H2 evolution rate of 1.01 mmol h-1 in the absence of a cocatalyst. This performance exceeds the majority of previously reported photocatalysts, exhibiting approximately 25-fold as ZnS, and 5-fold as H-CZS1-x with homogeneous distribution of equal content Cu dopants and Vs. In contrast to G-CZS1-x, the H adsorption on Cu sites for H-CZS1-x (ΔG(H*) = -1.22 eV) is excessively strong to inhibit the H2 release, and the charge separation efficiency for H-CZS1-x is relatively sluggish, revealing the positive role of a gradient distribution model of dopants and defects on activity enhancement. This work highlights the synergy of atomic dopants and defects in advancing photoactivity, as well as the significant benefit of the controllable distribution model of dopants and defects for photocatalysis.

18.
Adv Mater ; 36(16): e2312746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198832

RESUMO

The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.

19.
Adv Mater ; 35(13): e2209885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36644889

RESUMO

Piezoelectric mesocrystals as defective materials have been demonstrated to possess adsorptive and catalytic properties in redox reactions. However, there is still a lack of research on the quantitative relationship between the defect concentration and the piezocatalytic performance in piezoelectric mesocrystals. Herein, twin-hierarchical structure ZnO piezoelectric mesocrystals are taken with different oxygen-vacancies (OVs) concentrations to quantitatively investigate the effect of defect content on the peroxymonosulfate (PMS) piezo-activation in water purification. The ZnO piezoelectric mesocrystal with moderate OVs concentration exhibits a rapid antibiotic ornidazole (ORZ) pollutants degradation rate (0.034 min-1 ) and achieves a high PMS utilization efficiency (0.162) that exceeds the most state-of-the-art catalytic processes, while excessive OVs suppressed the piezocatalytic performance. Through calculations of electron property and reactants affinity, a quantitative relationship between OVs concentration and piezocatalytic properties is established. The ZnO mesocrystal with moderate OVs concentration realized increased electron delocalization, reduced charge transfer barrier, and enhanced reactants affinity, thus accelerating the kinetics of PMS activation. This work provides theoretical guidance for the application of defect engineering in mesocrystal to realize enhanced piezocatalytic performance.

20.
Mater Horiz ; 10(12): 5969-5982, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37885433

RESUMO

Simultaneously optimizing the d-band center of the catalyst and the mass/charge transport processes during the oxygen catalytic reaction is an essential but arduous task in the pursuit of creating effective and long-lasting bifunctional oxygen catalysts. In this study, a Fe-Co/Mo2C@N-doped carbon macroporous nanoframe was successfully synthesized via a facile "conformal coating and coordination capture" pyrolysis strategy. As expected, the resulting heterogeneous electrocatalyst exhibited excellent reversible oxygen electrocatalytic performance in an alkaline medium, as demonstrated by the small potential gap of 0.635 V between the operating potential of 1.507 V at 10 mA cm-2 for the oxygen evolution reaction and the half-wave potential of 0.872 V towards the oxygen reduction reaction. Additionally, the developed Zn-air battery employing the macroporous nanoframe heterostructure displayed an impressive peak power density of 218 mW cm-2, a noteworthy specific capacity of 694 mA h gZn-1, and remarkable charging/discharging cycle durability. Theoretical calculations confirmed that the built-in electric field between the Fe-Co alloy and Mo2C semiconductor could induce advantageous charge transport and redistribution at the heterointerface, contributing to the optimization of the d-band center of the nanohybrid and ultimately leading to a reduction in the reaction energy barrier during catalytic processes. The exquisite macroporous nanoframe facilitated the rapid transport of ions and charges, as well as the smooth access of oxygen to the internal active site. Thus, the presented unique electronic structure regulation and macroporous structure design show promising potential for the development of robust bifunctional oxygen electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA