Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(2): e2305277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661569

RESUMO

How to better understand the influence of electromagnetic parameters on the absorbing properties of electromagnetic wave absorbers (EMAs) is an essential prerequisite for further synthesis and development of high-performance EMAs. In this work, an improved wave cancellation theory is used as a guiding principle to prepare N-doped carbon-coated cobalt nanoparticles (Co@NC) using ZIF-8@ZIF-67 as the precursor, thus enabling controllable electromagnetic parameters by regulating the conduction loss and dipole polarization ability. The Co@NC generated by pyrolysis at 700 °C under H2 atmosphere presents an optimized absorption performance. Benefiting from developed wave cancellation theory, the thickness of the film can be accurately adjusted so that the difference between the amplitude of the reflected and transmitted electromagnetic waves is only 0.001 and the phase difference is 180.05°, thus achieving a minimum reflection loss (RLmin (dB)) of -64.0 dB. Meanwhile, a maximum effective absorption bandwidth of 5.4 GHz is achieved simultaneously attributing to its most suitable electromagnetic parameters. Accordingly, the current research based on wave cancellation theory significantly contributes to understand the relationships between electromagnetic parameters and wave absorption properties, therefore providing a theoretical insight into the further development of high-performance EMAs.

2.
Small ; 19(49): e2305353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606896

RESUMO

The combination of 2D magnetic nanosheets and mesoporous carbon with unique interfaces shows considerable prospects for microwave absorption (MA). However, traditional assembly procedures make it impossible to accurately manage the assembly of magnetic nanosheets in carbon matrices. Herein, a reverse strategy for preparing complex magnetic nanosheet cores inside carbon-based yolk-shell structures is developed. This innovative approach focuses on controlling the initial crystallite formation sites in a hydrothermal reaction as well as the inflow and in situ growth behavior of 2D NiCo-layered double hydroxide precursors based on the capillary force induced by hollow mesoporous carbon nanospheres. Accordingly, the as-prepared YS-CNC-2 absorber exhibits remarkable MA performances, with an optimal reflection loss as low as -60.30 dB at 2.5 mm and an effective absorption bandwidth of 5.20 GHz at 2.0 mm. The loss of electromagnetic waves (EMW) depends on natural resonance loss, dipole polarization relaxation, and multiple scattering behavior. On top of that, the functionalized super-hydrophobic MA coating is produced in spraying and curing processes utilizing YS-CNC-2 nanoparticles and fumed silica additives in the polydimethylsiloxane matrix. The excellent thermal insulation, self-cleaning capability, and durability in diverse solutions of the coating promise potential applications for military equipment in moist situations.

3.
ACS Appl Mater Interfaces ; 16(9): 11880-11889, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408367

RESUMO

Mixing fillers featured with wide band gaps in polymers can effectively meet the requirement of higher energy storage densities. However, the fundamental relationship between the crystal structures of fillers and the dielectric properties of the corresponding nanocomposites is still unclear. Accordingly, we introduced ultralow contents of the synthesized cubic Hafnium dioxide (c-HfO2) or monoclinic Hafnium dioxide (m-HfO2) as deep traps into poly(ether imide) (PEI) to explore their effects on dielectric properties and the charge-blocking mechanism. m-HfO2/PEI showed better charge trapping due to the higher electron affinity and deeper trap energy. At room temperature, the 0.4 vol % m-HfO2/PEI maintains an ultralow dielectric loss of 0.008 while obtaining a dielectric constant twice that of pure PEI at 1 kHz, simultaneously outperforming in terms of leakage current density, breakdown strength (452 kV mm-1), discharge energy density (Ud, 5.03 J cm-3), charge-discharge efficiency (η, 92%), and dielectric thermal stability. At 125 °C, it exhibits a considerable Ud of 2.48 J cm-3 and a high η of 85% at 300 kV mm-1, surpassing the properties of pure PEI. This promising work opens up a new path for studying HfO2-derived dielectrics with unique crystal structures.

4.
J Hazard Mater ; 381: 120945, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31421548

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) that undergo long-distance migration and have strong biological toxicity are a great threat to the health of ecosystems. In this study, the biodegradation characteristics and combined effects of mixed PAHs in bioelectrochemical systems (BESs) were studied. The results showed that, compared with a mono-carbon source, low-molecular-weight PAHs (LMW PAHs)-naphthalene (NAP) served as the co-substrate to promote the degradation of phenanthrene (PHE) and pyrene (PYR). The maximum degradation rates of PHE and PYR were 89.20% and 51.40% at 0.2500 mg/L in NAP-PHE and NAP-PYR at the degradation time of 120 h, respectively. Intermediate products were also detected, which indicated that the appending of relatively LMW PAHs had different effects on the metabolism of high-molecular-weight PAHs (HMW PAHs). The microbe species under different substrates (NAP-B, PHE-B, PYR-B, NAP-PHE, NAP-PYR, PHE-PYR) are highly similar, although the structure of the microbial community changed on the anode in the BES. In this study, the degradation regularity of mixed PAHs in BES was studied and provided theoretical guidance for the effective co-degradation of PAHs in the environment.


Assuntos
Reatores Biológicos , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Anaerobiose , Biodegradação Ambiental , Técnicas Eletroquímicas , Microbiota , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA