Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107403

RESUMO

Targeting tumor-infiltrating regulatory T (TI-Treg) cells is a potential strategy for cancer therapy. The ATPase p97 in complex with cofactors (such as Npl4) has been investigated as an antitumor drug target; however, it is unclear whether p97 has a function in immune cells or immunotherapy. Here we show that thonzonium bromide is an inhibitor of the interaction of p97 and Npl4 and that this p97-Npl4 complex has a critical function in TI-Treg cells. Thonzonium bromide boosts antitumor immunity without affecting peripheral Treg cell homeostasis. The p97-Npl4 complex bridges Stat3 with E3 ligases PDLIM2 and PDLIM5, thereby promoting Stat3 degradation and enabling TI-Treg cell development. Collectively, this work shows an important role for the p97-Npl4 complex in controlling Treg-TH17 cell balance in tumors and identifies possible targets for immunotherapy.

2.
J Biol Chem ; 300(6): 107311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657866

RESUMO

The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.


Assuntos
Dissulfiram , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Dissulfiram/farmacologia , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento de Hepatócito/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética
3.
Cancer Biol Med ; 21(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940675

RESUMO

Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. GC is determined by multiple (epi)genetic and environmental factors; can occur at distinct anatomic positions of the stomach; and displays high heterogeneity, with different cellular origins and diverse histological and molecular features. This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics. In the past decade, great progress has been made in the study of GC, particularly in molecular subtyping, investigation of the immune microenvironment, and defining the evolutionary path and dynamics. Preclinical mouse models, particularly immunocompetent models that mimic the cellular and molecular features of human GC, in combination with organoid culture and clinical studies, have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion, and the development of novel therapeutic strategies. Herein, we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models, emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.


Assuntos
Modelos Animais de Doenças , Neoplasias Gástricas , Microambiente Tumoral , Animais , Neoplasias Gástricas/patologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Camundongos , Humanos , Microambiente Tumoral/imunologia , Imunocompetência , Imunoterapia/métodos , Organoides/patologia
4.
Chem Sci ; 15(25): 9649-9656, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38939140

RESUMO

With the increasing attention paid to macrocyclic scaffolds in peptide drug development, genetically encoded peptide macrocycle libraries have become invaluable sources for the discovery of high-affinity peptide ligands targeting disease-associated proteins. The traditional phage display technique of constructing disulfide-tethered macrocycles by cysteine oxidation has the inherent drawback of reduction instability of the disulfide bond. Chemical macrocyclization solves the problem of disulfide bond instability, but the involved highly electrophilic reagents are usually toxic to phages and may bring undesirable side reactions. Here, we report a unique Sortase-mediated Peptide Ligation and One-pot Cyclization strategy (SPLOC) to generate peptide macrocycle libraries, avoiding the undesired reactions of electrophiles with phages. The key to this platform is to mine the unnatural promiscuity of sortase on the X residue of the pentapeptide recognition sequence (LPXTG). Low reactive electrophiles are incorporated into the X-residue side chain, enabling intramolecular cyclization with the cysteine residue of the phage-displayed peptide library. Utilizing the genetically encoded peptide macrocycle library constructed by the SPLOC platform, we found a high-affinity bicyclic peptide binding TEAD4 with a nanomolar KD value (63.9 nM). Importantly, the binding affinity of the bicyclic peptide ligand is 102-fold lower than that of the acyclic analogue. To our knowledge, this is the first time to mine the unnatural promiscuity of ligases to generate peptide macrocycles, providing a new avenue for the construction of genetically encoded cyclic peptide libraries.

5.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512451

RESUMO

Lactylation has been recently identified as a new type of posttranslational modification occurring widely on lysine residues of both histone and nonhistone proteins. The acetyltransferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A, is about 1,000 times lower than that of acetyl-CoA, raising the question of whether p300 is a genuine lactyltransferase. Here, we report that alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyltransferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway, which has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate the YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive-feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for patients with GC. Collectively, this work found AARS1 with lactyltransferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.


Assuntos
Alanina-tRNA Ligase , Transdução de Sinais , Neoplasias Gástricas , Fatores de Transcrição , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Ácido Láctico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA