Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 20(10): 1593-1604, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37770711

RESUMO

Recent proliferation and integration of tissue-clearing methods and light-sheet fluorescence microscopy has created new opportunities to achieve mesoscale three-dimensional whole-brain connectivity mapping with exceptionally high throughput. With the rapid generation of large, high-quality imaging datasets, downstream analysis is becoming the major technical bottleneck for mesoscale connectomics. Current computational solutions are labor intensive with limited applications because of the exhaustive manual annotation and heavily customized training. Meanwhile, whole-brain data analysis always requires combining multiple packages and secondary development by users. To address these challenges, we developed D-LMBmap, an end-to-end package providing an integrated workflow containing three modules based on deep-learning algorithms for whole-brain connectivity mapping: axon segmentation, brain region segmentation and whole-brain registration. D-LMBmap does not require manual annotation for axon segmentation and achieves quantitative analysis of whole-brain projectome in a single workflow with superior accuracy for multiple cell types in all of the modalities tested.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Encéfalo , Algoritmos , Mapeamento Encefálico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA