Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110806

RESUMO

Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of 1H-NMR, 13C-NMR, and mass spectral data, the isolated compounds were identified as 4-allylbenzene-1,2-diol and (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol. 4-Allylbenzene-1,2-diol was shown to have strong antibacterial activity against four plant pathogens, including Xanthomonas oryzae pathovar oryzae (Xoo), X. axonopodis pv. citri (Xac), X. oryzae pv. oryzicola (Xoc) and X. campestris pv. mangiferaeindicae (Xcm). Further bioassay results exhibited that 4-allylbenzene-1,2-diol had a broad antibacterial spectrum, including Xoo, Xac, Xoc, Xcm, X. fragariae (Xf), X. campestris pv. campestris (Xcc), Pectobacterium carotovorum subspecies brasiliense (Pcb) and P. carotovorum subsp. carotovorum (Pcc), with minimum inhibitory concentration (MIC) values ranging from 333.75 to 1335 µmol/L. The pot experiment showed that 4-allylbenzene-1,2-diol exerted an excellent protective effect against Xoo, with a controlled efficacy reaching 72.73% at 4 MIC, which was superior to the positive control kasugamycin (53.03%) at 4 MIC. Further results demonstrated that the 4-allylbenzene-1,2-diol damaged the integrity of the cell membrane and increased cell membrane permeability. In addition, 4-allylbenzene-1,2-diol also prevented the pathogenicity-related biofilm formation in Xoo, thus limiting the movement of Xoo and reducing the production of extracellular polysaccharides (EPS) in Xoo. These findings suggest the value of 4-allylbenzene-1,2-diol and P. austrosinense could be as promising resources for developing novel antibacterial agents.


Assuntos
Derivados de Alilbenzenos , Oryza , Xanthomonas , Virulência , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Derivados de Alilbenzenos/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia
2.
Molecules ; 25(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207599

RESUMO

We investigated alpha-mangostin (α-mangostin, α-MG), a xanthone natural product extracted from the pericarp of mangosteen (Garcinia mangostana), for its antifungal activities and possible mechanism against Colletotrichum gloeosporioides, which causes mango anthracnose. The results demonstrated that α-MG had a relatively high in vitro inhibitory activity against C. gloeosporioides among 20 plant pathogenic fungi. The median effective concentration (EC50) values of α-MG against mycelial growth were nearly 10 times higher than those of spore germination inhibition for both strains of C. gloeosporioides, the carbendazim-sensitive (CBD-s) and carbendazim-resistant (CBD-r). The results suggested that α-MG exhibited a better inhibitory effect on spore germination than on the mycelial growth of C. gloeosporioides. Further investigation indicated that the protective effect could be superior to the therapeutic effect for mango leaves for scab development. The morphological observations of mycelium showed that α-MG caused the accumulation of dense bodies. Ultrastructural observation further revealed that α-MG caused a decrease in the quantity and shape of the swelling of mitochondria in the mycelium cells of C. gloeosporioides. In addition, bioassays disclosed that the inhibitory activity of α-MG on spore germination was reduced by adding exogenous adenosine triphosphate (ATP). These results suggested that the mode of action of α-MG could be involved in the destruction of mitochondrial energy metabolism. The current study supports α-MG as a natural antifungal agent in crop protection.


Assuntos
Antifúngicos/farmacologia , Colletotrichum/efeitos dos fármacos , Xantonas/farmacologia , Trifosfato de Adenosina/farmacologia , Antifúngicos/química , Colletotrichum/ultraestrutura , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/ultraestrutura , Folhas de Planta/química , Esporos Fúngicos/efeitos dos fármacos , Xantonas/química , Xantonas/toxicidade
3.
Plant Dis ; 103(1): 69-76, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30451584

RESUMO

Corynespora blight, caused by Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei, has become an important disease affecting cucumber in China. Its management mainly depends on fungicides; however, no research has been conducted to assess the sensitivity of C. cassiicola in China to boscalid, a succinate dehydrogenase inhibitor (SDHI). To facilitate boscalid resistance monitoring, baseline sensitivity was established. The EC50 value (i.e., the concentration that results in 50% mycelial growth inhibition) frequency distribution was unimodal with a right-hand tail; with the means 0.95 ± 0.51 µg/ml and the range 0.03 to 2.85 µg/ml. We then assessed the sensitivity of C. cassiicola to boscalid using discriminatory doses and EC50 values. In total, 27.8% of the 798 isolates were resistant, distributed in five provinces and two municipalities. Thirty-seven isolates with different resistance levels to boscalid were also evaluated for their sensitivity to carboxin, fluopyram, and penthiopyrad. Seven SDHI resistance patterns were observed (i.e., I: BosMRFluoMRPenLRCarSS; II: BosVHRFluoSSPenMRCarR; III: BosLRFluoMRPenLRCarR; IV: BosMRFluoMRPenMRCarR; V: BosHRFluoMRPenHRCarR; VI: BosHRFluoHRPenHRCarR; and VII: BosHRFluoSSPenLR CarR, VHR: very highly resistant; HR: highly resistant; MR: moderately resistant; LR: low resistant; R: resistant; SS: supersensitive), corresponding to seven mutations in sdhB/C/D genes, respectively.


Assuntos
Doenças das Plantas , Compostos de Bifenilo , China , Farmacorresistência Fúngica , Proteínas Fúngicas , Niacinamida/análogos & derivados
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(11): 3764-71, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226713

RESUMO

Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed. The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared (FTIR) spectroscopy. In this study, FTIR-attenuated total reflectance (ATR) spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants. Mixtures of mycelia and spores from 27 fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements. The FTIR-ATR spectra ranging from 4 000 to 400 cm-1 were obtained. To classify the FTIR-ATR spectra, cluster analysis was compared with canonical vitiate analysis (CVA) in the spectral regions of 3 050~2 800 and 1 800~900 cm-1. Results showed that the identification accuracies achieved 97.53% and 99.18% for the cluster analysis and CVA analysis, respectively, demonstrating the high potential of this technique for fungal strain identification.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Análise por Conglomerados , Fungos , Micélio , Plantas
5.
Front Microbiol ; 14: 1207125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799610

RESUMO

Coumarin-3-carboxylic acid (3-CCA), previously screened from natural coumarins, was found to possess strong antibacterial activity against Acidovorax citrulli (Ac). In order to further evaluate the activity of this compound against plant bacterial pathogens and explore its potential value as a bactericidal lead compound, the activity of 3-CCA against 14 plant pathogenic bacteria in vitro and in vivo was tested. Results showed that 3-CCA exhibited strong in vitro activities against Ac, Ralstonia solanacearum, Xanthomonas axonopodis pv. manihotis, X. oryzae pv. oryzae, and Dickeya zeae with EC50 values ranging from 26.64 µg/mL to 40.73 µg/mL. Pot experiment results showed that 3-CCA had powerful protective and curative effects against Ac. In addition, the protective efficiency of 3-CCA was almost equivalent to that of thiodiazole copper at the same concentration. The results of SEM and TEM observation and conductivity tests showed that 3-CCA disrupted the integrity of the cell membrane and inhibited polar flagella growth. Furthermore, 3-CCA resulted in reductions in motility and extracellular exopolysaccharide (EPS) production of Ac while inhibiting the biofilm formation of Ac. These findings indicate that 3-CCA could be a promising natural lead compound against plant bacterial pathogens to explore novel antibacterial agents.

6.
Pest Manag Sci ; 77(9): 3980-3989, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33882186

RESUMO

BACKGROUND: For Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei, a necrotrophic pathogen with a broad host range and a worldwide distribution, resistance to fluopyram has been attributed to mutations in SdhB/C/D subunit of the succinate dehydrogenase (SDH) complex. In our previous study, two point mutations in SdhB from isoleucine to valine at position 280 (I280V) and histidine to tyrosine at position 278 (H278Y) showed different resistance phenotypes to fluopyram and boscalid. This research was conducted to explore the correlation between the mutation of SdhB-I280V or SdhB-H278Y and resistance to fluopyram or boscalid and its effect on the fitness characteristics of C. cassiicola. RESULTS: The sdhB gene in a succinate dehydrogenase inhibitor (SDHI)-sensitive C. cassiicola strain (wild type) was successfully replaced with the mutant sdhB gene (GTT at position 280, SdhB-I280V) or with the mutant sdhB gene (TAC at position 278, SdhB-H278Y,). Compared with the wild-type strain, the replacement mutants exhibited significantly different resistance phenotypes, with SdhB-V280 demonstrating moderate resistance to fluopyram and low resistance to boscalid, while SdhB-Y278 was supersensitive to fluopyram and very highly resistant to boscalid. Both of the mutants exhibited decreased sensitivity to salt stress and increased SDH activity. These two mutations had no effect on the mycelial growth rate, sporulation ability, pathogenicity in vivo, sensitivity to osmotic stress and oxidative stress, cell wall damaging agents, or SHAM. CONCLUSION: Two adjacent mutations in the SdhB gene conferred different resistance phenotypes to SDHIs in C. cassiicola, which is important for the development of alternative antifungal fungicides and fluopyram resistance management. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Succinato Desidrogenase , Ascomicetos , Benzamidas , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Mutação , Fenótipo , Doenças das Plantas , Piridinas , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA