Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794002

RESUMO

This article presents a high-precision obstacle detection algorithm using 3D mechanical LiDAR to meet railway safety requirements. To address the potential errors in the point cloud, we propose a calibration method based on projection and a novel rail extraction algorithm that effectively handles terrain variations and preserves the point cloud characteristics of the track area. We address the limitations of the traditional process involving fixed Euclidean thresholds by proposing a modulation function based on directional density variations to adjust the threshold dynamically. Finally, using PCA and local-ICP, we conduct feature analysis and classification of the clustered data to obtain the obstacle clusters. We conducted continuous experiments on the testing site, and the results showed that our system and algorithm achieved an STDR (stable detection rate) of over 95% for obstacles with a size of 15 cm × 15 cm × 15 cm in the range of ±25 m; at the same time, for obstacles of 10 cm × 10 cm × 10 cm, an STDR of over 80% was achieved within a range of ±20 m. This research provides a possible solution and approach for railway security via obstacle detection.

2.
Materials (Basel) ; 11(2)2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29463045

RESUMO

Black phosphorus (BP), a new two-dimensional material, has been the focus of scientists' attention. BP nanotubes have potential in the field of optoelectronics due to their low-dimensional effects. In this work, the bending strain energy, electronic structure, and optical properties of BP nanotubes were investigated by using the first-principles method based on density functional theory. The results show that these properties are closely related to the rolling direction and radius of the BP nanotube. All the calculated BP nanotube properties show direct bandgaps, and the BP nanotubes with the same rolling direction express a monotone increasing trend in the value of bandgap with a decrease in radius, which is a stacking effect of the compression strain on the inner atoms and the tension strain on the outer atoms. The bending strain energy of the zigzag phosphorene nanotubes (zPNTs) is higher than that of armchair phosphorene nanotubes (aPNT) with the same radius of curvature due to the anisotropy of the BP's structure. The imaginary part of the dielectric function, the absorption range, reflectivity, and the imaginary part of the refractive index of aPNTs have a wider range than those of zPNTs, with higher values overall. As a result, tunable BP nanotubes are suitable for optoelectronic devices, such as lasers and diodes, which function in the infrared and ultra-violet regions, and for solar cells and photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA