Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Chemistry ; : e202401400, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736421

RESUMO

Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3 r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3 r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.

2.
J Org Chem ; 89(12): 8878-8887, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38845522

RESUMO

A one-pot approach has been developed for the synthesis of α-ketothioamide derivatives from sulfur ylides, nitrosobenzenes, and thioacetic acid. This protocol is carried out under mild reaction conditions in generally moderate to excellent yields without any precious catalysts, affording the derivatives with structural diversity. Additionally, a possible mechanism for this chemical transformation is proposed.

3.
Bioorg Chem ; 145: 107217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368657

RESUMO

Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.


Assuntos
Proteínas Intrinsicamente Desordenadas , Neoplasias , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Desenho de Fármacos , Neoplasias/metabolismo , Conformação Proteica
4.
J Org Chem ; 88(6): 3808-3821, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867436

RESUMO

Novel type of Pd(II) complexes have been synthesized under operationally simple and convenient conditions and applied in the dynamic thermodynamic resolution of racemic N,C-unprotected α-amino acids. After rapid hydrolysis, these Pd(II) complexes produced the corresponding α-amino acids in satisfactory yields and enantioselectivities, accompanied by the recyclable proline-derived ligand. In addition, the method can be readily applied for S/R interconversion to obtain unnatural (R)-α-amino acids from readily available (S)-α-amino acids. Furthermore, biological assays showed that Pd(II) complexes (S,S)-3i and (S,S)-3m exhibited significant antibacterial activities similar to vancomycin, which may represent promising lead structures for further development of antibacterial agents.


Assuntos
Aminoácidos , Prolina , Prolina/química , Ligantes , Estereoisomerismo , Aminoácidos/química , Antibacterianos/farmacologia , Termodinâmica
5.
J Org Chem ; 88(15): 10810-10817, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37463066

RESUMO

The synthesis of 3-thioether-substituted dihydrofuro[2,3-b]benzofurans involving the [3 + 2] coupling of sulfur ylides with 2-nitrobenzofurans has been realized in moderate to good yields under mild conditions without any precious catalysts or additives. It is worth mentioning that the reutilization of the departed nitro-anion in the reaction process facilitates this new chemical transformation and presents a manner of high atom economy to provide products with a complex structure.

6.
Bioorg Med Chem ; 91: 117384, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356356

RESUMO

A group of 4-(1-methyl-1H-indol-3-yl)pyrimidin-2-amine derivatives containing a hypoxia-activated nitroimidazole group were designed as EGFR inhibitors. Among this series, A14 was identified as the optimal compound, exhibiting potent anti-proliferative activities against H1975 and HCC827 cells. Under hypoxic condition, the anti-proliferative activities of A14 improved by 4-6-fold (IC50 < 10 nM), indicating its hypoxia-selectivity. A14's high potency may be attributed to its inhibition against multiple kinases, including EGFR, JAK2, ROS1, FLT3, FLT4 and PDGFRα, which was confirmed by binding assays on a panel of 30 kinases. Furthermore, A14 exhibited good bio-reductive property and could bind with nucleophilic amino acids after being activated under hypoxic conditions. With its anti-proliferative activities and selectivity for hypoxia and oncogenic kinases, A14 shows promise as a multi-target kinase inhibitor for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nitroimidazóis , Humanos , Proteínas Tirosina Quinases/metabolismo , Proliferação de Células , Receptores ErbB , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/química , Hipóxia , Inibidores de Proteínas Quinases/química
7.
Bioorg Chem ; 135: 106507, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030106

RESUMO

The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.


Assuntos
Antineoplásicos , Linfoma de Célula do Manto , Humanos , Adulto , Inibidores de Proteassoma/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico
8.
Bioorg Chem ; 131: 106327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549254

RESUMO

Protopanoxadiol is a key active ingredient derived from Panax ginseng that is well-known to exhibit anti-tumor activity. Previous research focused on the natural protopanaxadiol derivative AD-1 has demonstrated that it possesses broad spectrum anti-tumor activities in vitro and in vivo. However, its limited activity, selectivity, and cell permeability have impeded its therapeutic application. Herein, a series of novel AD-1 derivatives were designed and synthesized based on proteolysis-targeting chimera (PROTAC) technology by linking AD-1 at the C-3 and C-12 positions with pomalidomide through linkers of alkyl chain of differing lengths to achieve the goal of improving the efficacy of the parent compound. Among these synthesized PROTACs, the representative compound A05 exhibited the most potent anti-proliferative activity against A549 cells. Furthermore, mechanistic studies revealed that compound A05 was able to suppress MDM2 expression, disrupt interactions between p53 and MDM2 and readily induce apoptotic death via the mitochondrial apoptosis pathway. Moreover, the in vivo assays revealed that compound A05 exhibited both anti-proliferative and anti-metastatic activities in the zebrafish tumor xenograft model with A549 cells. Together, our findings suggest that AD-1 based PROTACs associated with the degradation of MDM2 may have promising effects for the treatment of lung cancer and this work provide a foundation for future efforts to develop novel anti-tumor agents from natural products.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias Pulmonares , Quimera de Direcionamento de Proteólise , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteólise , Quimera de Direcionamento de Proteólise/síntese química , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/farmacologia , Peixe-Zebra , Células A549
9.
Bioorg Chem ; 138: 106626, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295239

RESUMO

Peptides have limitations as active pharmaceutical agents due to rapid hydrolysis by proteases and poor cell permeability. To overcome these limitations, a series of peptidyl proteasome inhibitors embedded with four-membered heterocycles were designed to enhance their metabolic stabilities. All synthesized compounds were screened for their inhibitory activities against human 20S proteasome, and 12 target compounds displayed potent efficacy with IC50 values lower than 20 nM. Additionally, these compounds exhibited strong anti-proliferative activities against multiple myeloma (MM) cell lines (MM1S: 72, IC50 = 4.86 ± 1.34 nM; RPMI-8226: 67, IC50 = 12.32 ± 1.44). Metabolic stability assessments of SGF, SIF, plasma and blood were conducted, and the representative compound 73 revealed long half-lives (Plasma: T1/2 = 533 min; Blood: T1/2 > 1000 min) and good proteasome inhibitory activity in vivo. These results suggest that compound 73 serve as a lead compound for the development of more novel proteasome inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Desenho de Fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
10.
Bioorg Chem ; 135: 106494, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37011522

RESUMO

To overcome or delay the drug-resistance of first-generation epidermal growth factor receptor (EGFR) kinase inhibitors and non-selectivity toxicity mediated by second-generation inhibitors, splicing principle was employed to design and synthesize a series of Osimertinib derivatives containing dihydroquinoxalinone (8-30) as the novel third-generation inhibitors against double mutant L858R/T790M in EGFR. Among them, compound 29 showed excellent kinase inhibitory activity against EGFRL858R/T790M with an IC50 value of 0.55 ± 0.02 nM and potent anti-proliferative activity against H1975 cells with an IC50 value of 5.88 ± 0.07 nM. Moreover, the strong down-regulation effect of EGFR-mediated signaling pathways and the promotion of apoptosis in H1975 cells confirmed its potent antitumor activities. Compound 29 was also demonstrated with good ADME profile in various in vitro assays. Further in vivo studies confirmed that compound 29 could suppress the growth of xenograft tumors. These results verified that compound 29 would be a promising lead compound for targeting drug-resistant EGFR mutations.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
11.
Angew Chem Int Ed Engl ; 62(13): e202217246, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670545

RESUMO

Hydrophobic tagging (HyT) is a potential therapeutic strategy for targeted protein degradation (TPD). Norbornene was discovered as an unprecedented hydrophobic tag in this study and was used to degrade the anaplastic lymphoma kinase (ALK) fusion protein by linking it to ALK inhibitors. The most promising degrader, Hyt-9, potently reduced ALK levels through Hsp70 and the ubiquitin-proteasome system (UPS) in vitro without compensatory upregulation of ALK. Furthermore, Hyt-9 exhibited a significant tumor-inhibiting effect in vivo with moderate oral bioavailability. More importantly, norbornene can also be used to degrade the intractable enhancer of zeste homolog 2 (EZH2) when tagged with the EZH2 inhibitor tazemetostat. Thus, the discovery of novel hydrophobic norbornene tags shows promise for the future development of TPD technology.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteólise , Inibidores Enzimáticos , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química
12.
J Org Chem ; 87(19): 12900-12908, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36153987

RESUMO

An operationally simple and convenient resolution method via Cu(II) complexes was reported, efficiently providing valuable enantiopure N,C-unprotected α-amino acids. This protocol features synthetically attractive yields and a stereochemical outcome, using a recyclable Schiff base ligand and inexpensive easily accessible metal copper salts. These novel Cu(II) complexes can be obtained in an enantiopure state by means of column chromatography or recrystallization. Furthermore, all the Cu(II) complexes were evaluated for their antibacterial activities. Among them, complexes (S,2S)-3a, (S,2S)-3g, and (S,2S)-3o showed significant antibacterial activities against Staphylococcus aureus Mu50. Further biological evaluation indicated that they were effective against most of Gram-positive bacteria. It is the first study on the biological activities of transition metal complexes with this type of proline-derived Schiff base ligand.


Assuntos
Complexos de Coordenação , Bases de Schiff , Aminoácidos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Ligantes , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Prolina/farmacologia , Sais , Bases de Schiff/química , Bases de Schiff/farmacologia
13.
Bioorg Chem ; 129: 106138, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115310

RESUMO

Hypoxia is widespread in solid tumors, such as NSCLC, and has become a very attractive target. On the basis of AZD9291 scaffold, novel hypoxia-targeted EGFR inhibitors without the acrylamide warhead but containing hypoxic reductive activation groups were described. Among them, compound JT21 exhibited impressive inhibitory activity (IC50 = 23 nM) against EGFRL858R/T790M and displayed about 21-fold inhibitory activity decrease against EGFRwt. Under hypoxia, JT21 exhibited more significant proliferation inhibitory activities against H1975 cells (IC50 = 7.39 ± 2.20 nM) and HCC827 cells (IC50 = 5.88 ± 0.85 nM) than that of AZD9291, which was about 5 times more effective than normoxia activities. Meanwhile, the weak inhibition effects on A549 and BEAS-2B cells suggested JT21 might be a selective inhibitor for EGFR mutations with low toxicity. Furthermore, JT21 could induce apoptosis of H1975 cells under hypoxia and showed good bio-reductive property.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Inibidores de Proteínas Quinases , Receptores ErbB , Hipóxia Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Mutação , Hipóxia
14.
Anticancer Drugs ; 32(7): 727-733, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735117

RESUMO

Vinpocetine is widely used to treat cerebrovascular diseases. However, the effect of vinpocetine to treat hepatocellular carcinoma (HCC) has not been investigated. In this study, we revealed that vinpocetine was associated with antiproliferative activity in HCC cells, but induced cytoprotective autophagy, which restricted its antitumor activity. Autophagy inhibitors improved the antiproliferative activity of vinpocetine in HCC cells. Sorafenib is effective to treat advanced HCC, but the effect of autophagy induced by sorafenib is indistinct. We demonstrated vinpocetine plus sorafenib suppressed the cytoprotective autophagy activated by vinpocetine in HCC cells and significantly induced apoptosis and suppressed cell proliferation in HCC cells. In addition, vinpocetine plus sorafenib activates glycogen synthase kinase 3ß (GSK-3ß) and subsequently inhibits cytoprotective autophagy induced by vinpocetine in HCC cells. Meanwhile, overexpression of GSK-3ß was efficient to increase the apoptosis induced by vinpocetine plus sorafenib in HCC cells. Our study revealed that vinpocetine plus sorafenib could suppress the cytoprotective autophagy induced by vinpocetine and subsequently show synergistically anti-HCC activity via activating GSK-3ß and the combination of vinpocetine and sorafenib might reverse sorafenib resistance via the PI3K/protein kinase B/GSK-3ß signaling axis. Thus, vinpocetine may be a potential candidate for sorafenib sensitization and HCC treatment, and our results may help to elucidate more effective therapeutic options for HCC patients with sorafenib resistance.


Assuntos
Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Sorafenibe/farmacologia , Alcaloides de Vinca/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Células Hep G2 , Humanos , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/administração & dosagem , Alcaloides de Vinca/administração & dosagem
15.
J Org Chem ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132524

RESUMO

Novel divergent domino annulation reactions of sulfur ylides with aryldiazonium tetrafluoroborates have been developed, affording various tetra- and trisubstituted pyrazole derivatives in moderate to good yields. Three molecules of sulfur ylides were applied as C1 synthon to construct the complex products with five new chemical bonds formed in these one-pot reactions.

16.
Langmuir ; 36(45): 13613-13620, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146536

RESUMO

Hydration plays an important role in the diffusion and sieving of ions within nanochannels. However, it is hard to quantitatively analyze the contribution of hydration to the diffusion rates due to the complex hydrogen-bond and charge interactions between atoms. Here, we quantitatively investigated the interfacial diffusion rates of a single hydrated ion with different number of water molecules on graphene surface through molecular dynamics simulation. The simulation results show the ballistic diffusion mode by analyzing the mean-square displacement, and the diffusion rates change nonmonotonically with the hydration number. The potential energy profiles with the changing position of the hydrated ion on graphene surface were further analyzed, which shows the dominant factor for interfacial diffusion changing from ion-graphene interaction to water-graphene interaction as the number of water molecules increases. Besides, it was found that the surface hydrophilicity weakened the influence of hydration number on the diffusion rates of hydrated ion. Finally, the diffusion properties of different hydrated ions on graphene surface were investigated, and the hydrated Li+, Na+, and K+ containing three, four, and five water molecules, respectively, show the fastest diffusion rate. This work demonstrates the interfacial diffusion behavior and mechanism of hydrated ions at the molecular level, which can provide valuable guidance in nanosensors, seawater desalination, and other hydrated ion-related fields.

17.
Biochem Biophys Res Commun ; 512(4): 852-858, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929918

RESUMO

Regorafenib has been approved to treat patients who have HCC progression after sorafenib failure, however, regorafenib also faces the risk of drug resistance and subsequent progression of HCC patients. As LSD1 inhibitors can alleviate acquired resistance to sorafenib, in this context, we are interested to investigate the role of LSD1 in regorafenib treatment. Firstly, over-expressed LSD1 was observed in HCC patients and predicted poor prognosis. However, regorafenib failed to suppress the expression of LSD1 in HCC cells. Thus, we hypothesized that LSD1 inhibition could enhance the anti-HCC activity of regorafenib. As expected, LSD1 knockdown could enhance anti-proliferation effect of regorafenib in HCC cells. LSD1 inhibitor SP2509 could enhance the cytotoxic and apoptotic effects of regorafenib in HCC cells. In addition, clinically used LSD1 inhibitor tranylcypromine also enhanced anti-HCC effect of regorafenib. Furthermore, LSD1 suppressed by SP2590 or tranylcypromine could alleviate the activated p-AKT (ser473) induced by regorafenib in HCC cells. Thus, inhibiting LSD1 might be an attractive target for regorafenib sensitization and clinical HCC therapy, our findings could help to elucidate more effective therapeutic options for HCC patients.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Histona Desmetilases/genética , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/farmacologia , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Compostos de Fenilureia/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/administração & dosagem , Serina/metabolismo , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Tranilcipromina/administração & dosagem , Tranilcipromina/farmacologia
18.
Molecules ; 24(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836604

RESUMO

A facile and eco-friendly method has been developed for the synthesis of imidazoles and thiazoles from ethylarenes in water. The reaction proceeds via in situ formation of α-bromoketone using NBS as a bromine source as well as an oxidant, followed by trapping with suitable nucleophiles to provide the corresponding products in good yields under metal-free conditions.


Assuntos
Bromosuccinimida/química , Imidazóis/síntese química , Tiazóis/síntese química , Bromo/química , Estrutura Molecular , Solventes/química , Temperatura , Fatores de Tempo , Água/química
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(6): 688-694, 2019 12 25.
Artigo em Chinês | MEDLINE | ID: mdl-31955545

RESUMO

Immunoproteasome is associated with various diseases such as hematologic malignancies, inflammatory, autoimmune and central nervous system diseases, and over expression of immunoproteasome is observed in all of these diseases. Immunoproteasome inhibitors can reduce the expression of immunoproteasome by inhibiting the production of related cell-inducing factors and the activity of T lymphocyte for treating related diseases. In order to achieve good efficacy and reduce the toxic effects, key for development of selective immunoproteasome inhibitors is the high selectivity and potent activity of the three active subunits of the proteasome. This review summarizes the structure and functions of immunoproteasome and the associated diseases. Besides, structure, activity and status of selective immunoproteasome inhibitors are also been highlighted.


Assuntos
Inibidores de Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Pesquisa/tendências , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos
20.
Eur J Med Chem ; 264: 115998, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043492

RESUMO

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway serves as a crucial regulator against oxidative stress (OS) damage in various cells and organs. It has garnered significant attention as a potential therapeutic target for neurodegenerative diseases (NDD). Although progress has been achieved in strategies to regulate the Keap1-Nrf2 pathway, the availability of Nrf2 activators applicable to NDD is currently limited. Currently, the FDA has approved the Nrf2 activators dimethyl fumarate (DMF) and Omaveloxolone (Omav) as novel first-line oral drugs for the treatment of patients with relapsing forms of multiple sclerosis and Friedreich's ataxia. A promising alternative approach involves the direct inhibition of Keap1-Nrf2 protein-protein interactions (PPI), which offers numerous advantages over the use of electrophilic Nrf2 activators, primarily in avoiding off-target effects. This review examines the compelling evidence supporting the beneficial role of Nrf2 in NDD and explores the potential of Keap1 inhibitors and Keap1-Nrf2 PPI inhibitors as therapeutic agents, with the aim to provide further insights into the development of inhibitors targeting this pathway for the treatment of NDD.


Assuntos
Fator 2 Relacionado a NF-E2 , Doenças Neurodegenerativas , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA