Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Chem Chem Phys ; 25(11): 7662-7668, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857697

RESUMO

As an emerging green energy storage and conversion system, rechargeable Li-CO2 batteries have undergone extensive research due to their ultra-high energy density and their significant role in greenhouse gas CO2 conversion. However, current Li-CO2 batteries have some shortcomings that severely limit their large-scale application. The most critical problems involve the insulation of the discharge product Li2CO3 and the slow decomposition kinetics, meaning that the battery generates a large overpotential and has a low cycle life, so the rational design of an efficient cathode catalyst is imperative. Here, we prepared a composite material via the magnetron sputtering of Pt onto nitrogen-doped polypyrrole carbon nanotubes (NPPy-CNTs) as a high-efficiency cathode catalyst for Li-CO2 batteries. The three-dimensional hollow tubular NPPy-CNTs can provide efficient channels for CO2 diffusion and enough space for the uniform deposition and decomposition of Li2CO3. Benefiting from the doping of nitrogen, more defects and active sites are introduced into the polypyrrole carbon nanotubes. Furthermore, the introduction of a small amount of the precious metal Pt effectively improves the catalytic activity of the CO2 reduction reaction (CO2RR) and the CO2 release reaction (CO2ER), greatly improving the cycle life of the battery. The Pt-NPPy-CNT-based battery shows a much improved electrochemical performance. The overpotential of the battery is reduced to 0.75 V, and the battery shows a specific discharge capacity of up to 29 614 mA h g-1.

2.
Phys Chem Chem Phys ; 25(22): 15271-15278, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37221910

RESUMO

Li-rich Mn-based layered materials are considered the most promising next-generation high-energy-density cathode materials due to their high capacity, but their large irreversible capacity loss and severe voltage attenuation hinder their practical application. The limited operating voltage also makes it difficult to satisfy the increasing demand of high energy density in future applications. Inspired by the high voltage platform of Ni-rich LiNi0.8Co0.1Mn0.1O2, we design and prepare a Li1.2Ni0.32Co0.04Mn0.44O2 (LLMO811) cathode material with increased Ni content via the acrylic acid polymerization method and regulate the amounts of excess lithium of LLMO. It is found that LLMO-L3 with 3% excess lithium has the highest initial discharge capacity of 250 mA h g-1 with a coulombic efficiency of 83.8%. Taking advantage of a high operating voltage of about 3.75 V, the material achieves an impressive high energy density of 947 W h kg-1. Moreover, the capacity at 1C reaches 193.2 mA h g-1, which is higher than that of ordinary LLMO811. This large capacity is attributed to the highly reversible O redox reaction, and the strategy used to achieve this would throw some light on the exploration of high-energy-density cathodes.

3.
Opt Express ; 28(26): 38626-38637, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379429

RESUMO

In this paper, we propose and demonstrate a switchable terahertz metamaterial absorber with broadband and multi-band absorption based on a simple configuration of graphene and vanadium dioxide (VO2). The switchable functional characteristics of the absorber can be achieved by changing the phase transition property of VO2. When VO2 is insulating, the device acts as a broadband absorber with absorbance greater than 90% under normal incidence from 1.06 THz to 2.58 THz. The broadband absorber exhibits excellent absorption performance under a wide range of incident and polarization angles for TE and TM polarizations. Moreover, the absorption bandwidth and intensity of the absorber can be dynamically adjusted by changing the Fermi energy level of graphene. When VO2 is in the conducting state, the designed metamaterial device acts as a multi-band absorber with absorption frequencies at 1 THz, 2.45 THz, and 2.82 THz. The multi-band absorption is achieved owing to the fundamental resonant modes of the graphene ring sheet, VO2 hollow ring patch, and coupling interaction between them. Moreover, the multi-band absorber is insensitive to polarization and incident angles for TE and TM polarizations, and the three resonance frequencies can be reconfigured by changing the Fermi energy level of graphene. Our designed device exhibits the merits of bi-functionality and a simple configuration, which is very attractive for potential terahertz applications such as intelligent attenuators, reflectors, and spatial modulators.

4.
J Nanosci Nanotechnol ; 19(1): 119-124, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327010

RESUMO

The K-doped Li1-xKxFePO4 (x = 0, 0.005, 0.01, and 0.02) samples were synthesized successfully via a solid-state method, and the electronic structures of the samples were calculated by the first-principles based on density functional theory. Theoretical calculations show that the bandwidth of Li1-xKxFePO4 decreases with the increase in K+ doping, which is consistent with the experimental results. It was demonstrated that Li0.995K0.005FePO4 delivers higher capacity retention with 92.7% after 100 cycles compared with LiFePO4 (86.3%) at 1 C and shows better high-rate performance with capacities of 151.9, 151.8, 149.2, 128.3, and 84.6 mAh·g-1 at current densities of 0.1 C, 0.2 C, 0.5 C, 1 C, and 3 C; the corresponding values for LiFePO4 were 153.2, 136.5, 125.9, 111.5, and 66.0 mAh·g-1. Owing to the expanded Li ion diffusion pathway, EIS analysis showed that the lithium ion diffusion coefficient of LiFePO4 doped with K ion was significantly improved compared to LiFePO4; the values were 1.934×10-13 and 1.658×10-12 cm²·s-1, respectively. Additionally, Li0.995K0.005FePO4 showed a lower charge transfer resistance (300.2 Ω compared to 407.1 Ω of LiFePO4).

6.
Zhonghua Yan Ke Za Zhi ; 51(8): 581-5, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26696574

RESUMO

OBJECTIVE: To summarized the clinical features of thyroid associated ophthalmopathy patients with myasthenia gravis. METHODS: This is a retrospective case series study. The clinical data of 12 thyroid associated ophthalmopathy patients with myasthenia gravis were collected in the 416 Hospital of Nuclear Industry from Oct. 2012 to Feb. 2014. All patients had a detailed medical history including symptoms of onset, the best corrected visual acuity, anterior and posterior segment examination, the exophthalmos, eyelid position, eye movement, diplopia, strabismus, systemic symptoms, concurrent fatigue test, neostigmine test, thyroid function and orbital CT scan. One patient underwent CT examination of thymus. RESULTS: In all 12 patients, there were 8 females and 4 males with age from 13.0 to 44.0 years (the median age of 26.5 years), 11 cases had difficulties to open their eyes which was least severe in the morning and worsened in the evening. All of cases did not have general symptoms. Ptosis was observed in 9 cases, 3 cases were bilateral, and 6 cases were unilateral. Abnormal extra ocular muscle function was observed in 8 cases, all of them were bilateral. In these 16 eyes, the limitation of downward gaze were observed in 15 eyes, the limitation of upward, outward and inward gaze were observed in 14 eyes, eye fixation occurred in 4 eyes. Four cases had diplopia, 3 cases had strabismus, and 2 of them were exotropia. Orbital CT demonstrated extraocular muscle thickening in 6 cases. Thickening of inferior rectus were observed in all 12 eyes, superior rectus and medial rectus were found thickened in 6 eyes, and thickening of lateral rectus muscle was found in 3 eyes. CONCLUSIONS: The clinical features of thyroid associated ophthalmopathy patients with myasthenia gravis were complex. When ptosis and eye movement disorders were not consistent with TAO severity, associating with exotropia and systemic muscle paralysis, myasthenia gravis should be considered.


Assuntos
Oftalmopatia de Graves/complicações , Miastenia Gravis/complicações , Adolescente , Adulto , Blefaroptose/diagnóstico , Exoftalmia/diagnóstico , Exotropia/complicações , Movimentos Oculares , Pálpebras , Feminino , Fixação Ocular , Oftalmopatia de Graves/fisiopatologia , Humanos , Masculino , Miastenia Gravis/fisiopatologia , Transtornos da Motilidade Ocular/complicações , Músculos Oculomotores/fisiopatologia , Órbita , Estudos Retrospectivos , Estrabismo/diagnóstico , Tomografia Computadorizada por Raios X , Acuidade Visual
7.
J Trace Elem Med Biol ; 82: 127355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071864

RESUMO

BACKGROUND: Cadmium (Cd) is a highly toxic environmental pollutant that can enter the body through bioaccumulation. The kidney is an important target organ for Cd poisoning. Quercetin (Que) is a natural flavonoid compound with free radical scavenging and antioxidant properties. Previous studies showed that Que can alleviate kidney damage caused by Cd poisoning in rats, but the specific mechanism is still unclear. METHODS: Twenty-four male Sprague-Dawley (SD) rats were divided into four groups: normal saline-treated control group, Cd group treated by intraperitoneal injection of 2 mg/kg b.w. CdCl2, Cd + Que group treated by intraperitoneal injection of 2 mg/kg b.w. CdCl2 and 100 mg/kg b.w. Que, and Que group treated by 100 mg/kg b.w. Que. Four weeks later, the rats were anesthetized with diethyl ether, and blood was taken intravenously. The rats were executed with their necks cut off, and the kidneys were removed. Body weight, kidney organ weight, and glutathione (GSH) and malondialdehyde (MDA) levels were measured. The structure of kidney tissue was observed by hematoxylin and eosin staining, kidney cell apoptosis was detected by TUNEL assay, and the mRNA expression levels of genes related to the PERK signaling pathway were analyzed by RT-PCR. RESULTS: Compared with the control group, the Cd-treated group exhibited a significant decrease in body weight (P < 0.01). Their kidneys showed a significant increase in the relative organ weight (P < 0.01). Moreover, the MDA and GSH levels increased. Kidney tissue damage and renal cell apoptosis were observed, and the mRNA expression levels of genes related to the PERK signaling pathway significantly increased (P < 0.01). Compared with the Cd-treated group, the Cd + Que group exhibited a significant increase in body weight (P < 0.01) and significant decreases in the relative organ weight, MDA and GSH levels, and mRNA expression levels of genes related to the PERK signaling pathway (P < 0.01). Furthermore, kidney tissue damage and renal cell apoptosis were observed. CONCLUSION: Cd treatment resulted in rat weight loss, renal edema, and oxidative stress and caused renal tissue damage and cell apoptosis by activating the PERK signaling pathway. Que was able to restore the body weight and renal coefficient of rats. It also alleviated the oxidative stress and kidney tissue damage caused by Cd and the cell apoptosis caused by Cd through inhibiting the PERK signaling pathway. Thus, Que could be considered for the treatment of kidney diseases caused by Cd poisoning.


Assuntos
Intoxicação por Cádmio , Cádmio , Ratos , Masculino , Animais , Cádmio/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Sprague-Dawley , Antioxidantes/metabolismo , Rim , Estresse Oxidativo , Glutationa/metabolismo , Transdução de Sinais , Apoptose , Peso Corporal , RNA Mensageiro/metabolismo
8.
Toxicon ; 237: 107561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092195

RESUMO

Cadmium (Cd) exposure causes oxidative damage to mitochondria, which would adversely affect rat testicular tissue. Quercetin (Que) is a natural antioxidant with anti-inflammatory, antioxidant and anti-apoptotic effects. However, the mechanism by which Que inhibits Cd-induced apoptosis of testicular cells remains unclear. The purpose of this study was to investigate the role of mitochondrial apoptosis pathway (Cyt-c/Caspase-9/Caspase-3/Bax/Bcl-2 pathway) in inhibiting Cd-induced apoptosis of testicular cells by Que. We used SD rats to simulate Cd chloride exposure by treating all sides of the rats with CdCl2 and/or Que. The levels of GSH and MDA in rat testis were detected using reagent kits. The effects of CdCl2 and/or Que on tissue damage, apoptosis, and gene and protein expression of the Cyt-c/Caspase-9/Caspase-3/Bax/Bcl-2 pathway in rat testis were examined by HE, TUNEL, RNA extraction and reverse-transcriptase polymerase chain reaction (RT-PCR), and Western blot (Wb). The results show that Cd significantly increased the contents of GSH and MDA in rat testis (P < 0.01); conversely, Que significantly reduced the contents of GSH and MDA (P < 0.01). Cd inflicted damage to testicular tissue, and Que addition significantly reduced the damage. Cd increased the number of apoptosis of testicle cells, and Que inhibited testicle-cell apoptosis. In addition, the results of reverse transcription PCR and Wb assays confirmed that, as expected, Cd increased the expression levels of Cyt-c, Caspase-9, Caspase-3, and Bax mRNAs as well as proteins. And at the same time decreased the expression of the anti-apoptotic factor Bcl-2 in the cells. Surprisingly, these effects were reversed when Que was added. Therefore, Que can play an antioxidant and anti-apoptotic role in reducing the testicular tissue damage caused by Cd exposure. This provides a conceptual basis for the later development and utilization of Que as well as the prevention and treatment of tissue damage caused by Cd exposure.


Assuntos
Antioxidantes , Quercetina , Masculino , Ratos , Animais , Quercetina/farmacologia , Quercetina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Cádmio/toxicidade , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo , Testículo , Apoptose , Citocromos c/metabolismo
9.
Environ Sci Pollut Res Int ; 30(60): 125790-125805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38001299

RESUMO

Cadmium (Cd) is a highly toxic environmental pollutant. The liver is an important metabolic organ in the body and is susceptible to Cd toxicity attacks. Quercetin (Que) is a flavonoid compound with pharmacological activities of scavenging free radicals and antioxidant activity. Previous studies have shown that Que can alleviate Cd caused hepatocyte apoptosis in rats, but the specific mechanism remains unclear. To explore the specific mechanism, we established a model of Cd toxicity and Que rescue in BRL-3A cells and used 4-phenylbutyrate (4-PBA), an endoplasmic reticulum stress (ERS) inhibitor, as positive control. Set up a control group, Cd treatment group, Cd and Que co treatment group, Que treatment group, Cd and 4-PBA co treatment group, and 4-PBA treatment group. Cell Counting Kit-8 (CCK-8) method was employed to measure cell viability. Fluorescence staining was applied to observe cell apoptosis. Flow cytometry was performed to detect reactive oxygen species levels. Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot method was adopted to detect the mRNA and protein expression levels of ERS and apoptosis-related genes. The results showed that compared with the control group, the Cd treated group showed a significant decrease in cell viability (P < 0.01), an increase in intracellular ROS levels, and apoptosis. The mRNA and protein expression levels of ERS and apoptosis related factors such as GRP78, IRE1α, XBP1, ATF6, Caspase-12, Caspase-3 and Bax in the cells were significantly increased (P < 0.01), while the mRNA and protein expression levels of Bcl-2 were significantly reduced (P < 0.01). Compared with the Cd treatment group, the Cd and Que co treatment group and the Cd and 4-PBA co treatment group showed a significant increase in cell viability (P < 0.01), a decrease in intracellular ROS levels, a decrease in cell apoptosis, and a significant decrease in the expression levels of ERS and apoptosis related factors mRNA and protein (P < 0.01), as well as a significant increase in Bcl-2 mRNA and protein expression (P < 0.01). We confirmed that Que could alleviate the apoptosis caused by Cd in BRL-3A cells, and the effects of Que were similar to those of ERS inhibitor.


Assuntos
Cádmio , Quercetina , Ratos , Animais , Quercetina/farmacologia , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Apoptose , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático
10.
J Phys Chem Lett ; 13(35): 8214-8220, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36006863

RESUMO

Voltage decay during cycling is the major problem for lithium-rich layered oxide cathodes. Here, we designed Sb-doped lithium-rich layered oxides prepared by a coprecipitation-solvent thermal method, aiming to alleviate the voltage decay of lithium-rich layered oxides. The midpoint discharge voltage and specific capacity of Li1.20Ni0.133Co0.133Mn0.633Sb0.01O2 (LLMO-Sb1) demonstrate almost no decaying after 100 cycles at 1 C. Moreover, it exhibits a large rate capacity (215 mAh g-1 at 5 C). The suppressed voltage decay and enhanced cycle performance of Sb-doped material are attributed to the high Sb-O bond energy, which can enhance the stability of the layered structure and suppress the layered-to-spinel phase transition. Moreover, Sb doping improves the rate capacity by reducing the energy barrier of lithium ion diffusion. This work opens a gate to prevent the oxidation of superoxo and peroxo, stabilizing the layered structure by selecting an element with a suitable radius and electronegativity.

11.
Front Chem ; 9: 670612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937205

RESUMO

Nowadays, Li-CO2 batteries have attracted enormous interests due to their high energy density for integrated energy storage and conversion devices, superiorities of capturing and converting CO2. Nevertheless, the actual application of Li-CO2 batteries is hindered attributed to excessive overpotential and poor lifespan. In the past decades, catalysts have been employed in the Li-CO2 batteries and been demonstrated to reduce the decomposition potential of the as-formed Li2CO3 during charge process with high efficiency. However, as a representative of promising catalysts, the high costs of noble metals limit the further development, which gives rise to the exploration of catalysts with high efficiency and low cost. In this work, we prepared a K+ doped MnO2 nanowires networks with three-dimensional interconnections (3D KMO NWs) catalyst through a simple hydrothermal method. The interconnected 3D nanowires network catalysts could accelerate the Li ions diffusion, CO2 transfer and the decomposition of discharge products Li2CO3. It is found that high content of K+ doping can promote the diffusion of ions, electrons and CO2 in the MnO2 air cathode, and promote the octahedral effect of MnO6, stabilize the structure of MnO2 hosts, and improve the catalytic activity of CO2. Therefore, it shows a high total discharge capacity of 9,043 mAh g-1, a low overpotential of 1.25 V, and a longer cycle performance.

12.
J Inorg Biochem ; 214: 111310, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221601

RESUMO

This study aimed to investigate the effect of naringenin (Nar) on cadmium (Cd)-induced testicular toxicity. Twenty-four male Sprague-Dawley (SD) rats aged 5 weeks were used. Rats were administered with 0.9% NaCl (control group), CdCl2 (2 mg/kg b.w. intraperitoneally), Nar (50 mg/kg b.w, orally), and CdCl2 + Nar (2 mg/kg b.w intraperitoneally and 50 mg/kg b.w. orally, respectively) for 4 weeks. Results showed that body weight, relative testis weights, and sperm quality decreased in the Cd-treated group, and Cd accumulated in serum and testes. Pathological examination showed that Cd can cause testicular damage. Cd decreased the serum concentrations of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. It also decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Moreover, exposure to Cd resulted in decreased content of reduced glutathione (GSH) and total antioxidant capacity (T-AOC) concentrations, as well as increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Cd also provoked testis autophagy by upregulating the expression of the autophagy-related proteins P62 and LC3 II. However, the combined administration of Nar and Cd significantly attenuated the Cd-induced negative effects by increasing the body weight, relative testis weights, and sperm quality and by decreasing testicular damage. Simultaneous supplementation of Nar and Cd markedly restored the decreased levels of GnRH, FSH, LH, testosterone, GSH, and T-AOC and the activities of SOD, CAT, and GPx caused by Cd treatment. Nar further suppressed MDA and H2O2 production and protected the testes from Cd-induced autophagy by downregulating P62 and LC3 II expression. Therefore, Nar protected the testes from Cd-induced toxicity.


Assuntos
Cádmio/toxicidade , Flavanonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Espermatozoides/patologia , Testículo/patologia
13.
Environ Sci Pollut Res Int ; 27(20): 25278-25286, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32347499

RESUMO

Cadmium (Cd), a highly toxic heavy metal, adversely affects human and animal health. Quercetin (Que) is a kind of flavonoid that can protect many tissues from the toxic effect of heavy metals. Although many studies have explored the adverse effects of cadmium on rats and other animals, the mechanism of Cd-induced testicular autophagy and the antagonistic effect of Que on cadmium remain unclear. In this study, Sprague-Dawley rats were treated with Cd, Que or Cd, and Que supplements to explore the mechanisms of Que-alleviated testis injury caused by Cd exposure. The rat body weight and relative testicular weight were measured. Morphological changes in testes and indices of oxidative stress were also examined. The expression levels of autophagy-related genes were detected as well. Results showed that Cd decreased the rat body weight and relative testicular weight and induced pathological changes in testes. Conversely, Que alleviated these changes. We also found that Cd increased the malondialdehyde content and decreased the contents of total superoxide dismutase, glutathione peroxidase, catalase, and glutathione. Moreover, the protein expression levels of P62 and LC3-II increased under Cd exposure conditions. Conversely, Que obviously alleviated these toxic activities induced by Cd. Overall, this study showed that Cd accumulated in rat testes, leading to oxidative stress and autophagy. Que can reduce cadmium toxicity by reducing oxidative stress and inhibiting autophagy. The specific mechanism of Que antagonizing Cd toxicity can provide new insights into countering cadmium toxicity.


Assuntos
Autofagia , Quercetina , Animais , Antioxidantes , Cádmio , Humanos , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase , Testículo
14.
Front Chem ; 8: 761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005609

RESUMO

To address increasingly prominent energy problems, lithium-ion batteries have been widely developed. The high-nickel type nickel-cobalt-manganese (NCM) ternary cathode material has attracted attention because of its high energy density, but it has problems such as cation mixing. To address these issues, it is necessary to start from the surface and interface of the cathode material, explore the mechanism underlying the material's structural change and the occurrence of side reactions, and propose corresponding optimization schemes. This article reviews the defects caused by cation mixing and energy bands in high-nickel NCM ternary cathode materials. This review discusses the reasons why the core-shell structure has become an optimized high-nickel ternary cathode material in recent years and the research progress of core-shell materials. The synthesis method of high-nickel NCM ternary cathode material is summarized. A good theoretical basis for future experimental exploration is provided.

15.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365929

RESUMO

Nickel-rich layered LiNi1-x-yCoxMnyO2 (LiMO2) is widely investigated as a promising cathode material for advanced lithium-ion batteries used in electric vehicles, and a much higher energy density in higher cut-off voltage is emergent for long driving range. However, during extensive cycling when charged to higher voltage, the battery exhibits severe capacity fading and obvious structural collapse, which leads to poor cycle stability. Herein, Sn-doping and in situ formed Li2SnO3 nano-coating layer co-modified spherical-like LiNi0.5Co0.2Mn0.3O2 samples were successfully prepared using a facile molten salt method and demonstrated excellent cyclic properties and high-rate capabilities. The transition metal site was expected to be substituted by Sn in this study. The original crystal structures of the layered materials were influenced by Sn-doping. Sn not only entered into the crystal lattice of LiNi0.5Co0.2Mn0.3O2, but also formed Li+-conductive Li2SnO3 on the surface. Sn-doping and Li2SnO3 coating layer co-modification are helpful to optimize the ratio of Ni2+ and Ni3+, and to improve the conductivity of the cathode. The reversible capacity and rate capability of the cathode are improved by Sn-modification. The 3 mol% Sn-modified LiNi0.5Co0.2Mn0.3O2 sample maintained the reversible capacity of 146.8 mAh g-1 at 5C, corresponding to 75.8% of its low-rate capacity (0.1C, 193.7mAh g-1) and kept the reversible capacity of 157.3 mAh g-1 with 88.4% capacity retention after 100 charge and discharge cycles at 1C rate between 2.7 and 4.6 V, showing the improved electrochemical property.

16.
Materials (Basel) ; 13(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991551

RESUMO

The garnet Li7La3Zr2O12 (LLZO) has been widely investigated because of its high conductivity, wide electrochemical window, and chemical stability with regards to lithium metal. However, the usual preparation process of LLZO requires high-temperature sintering for a long time and a lot of mother powder to compensate for lithium evaporation. In this study submicron Li6.6La3Zr1.6Nb0.4O12 (LLZNO) powder-which has a stable cubic phase and high sintering activity-was prepared using the conventional solid-state reaction and the attrition milling process, and Li stoichiometric LLZNO ceramics were obtained by sintering this powder-which is difficult to control under high sintering temperatures and when sintered for a long time-at a relatively low temperature or for a short amount of time. The particle-size distribution, phase structure, microstructure, distribution of elements, total ionic conductivity, relative density, and activation energy of the submicron LLZNO powder and the LLZNO ceramics were tested and analyzed using laser diffraction particle-size analyzer (LD), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), and the Archimedean method. The total ionic conductivity of samples sintered at 1200 °C for 30 min was 5.09 × 10-4 S·cm-1, the activation energy was 0.311 eV, and the relative density was 87.3%. When the samples were sintered at 1150 °C for 60 min the total ionic conductivity was 3.49 × 10-4 S·cm-1, the activation energy was 0.316 eV, and the relative density was 90.4%. At the same time, quasi-solid-state batteries were assembled with LiMn2O4 as the positive electrode and submicron LLZNO powder as the solid-state electrolyte. After 50 cycles, the discharge specific capacity was 105.5 mAh/g and the columbic efficiency was above 95%.

17.
Materials (Basel) ; 13(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940758

RESUMO

Lithium-rich layered oxide is one of the most promising candidates for the next-generation cathode materials of high-energy-density lithium ion batteries because of its high discharge capacity. However, it has the disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2 was successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2 prepared by the oxalic acid co-precipitation method had the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity was 261.6 mAh·g-1 at 0.05 C, and the discharge specific capacity was 138 mAh·g-1 at 5 C. The voltage decay was only 210 mV, and the capacity retention was 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high-energy-density lithium-ion batteries.

19.
Angiology ; : 33197241259216, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869423
20.
Materials (Basel) ; 13(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861775

RESUMO

Li-rich layered oxide cathode materials have become one of the most promising cathode materials for high specific energy lithium-ion batteries owning to its high theoretical specific capacity, low cost, high operating voltage and environmental friendliness. Yet they suffer from severe capacity and voltage attenuation during prolong cycling, which blocks their commercial application. To clarify these causes, we synthesize Li1.5Mn0.55Ni0.4Co0.05O2.5 (Li1.2Mn0.44Ni0.32Co0.04O2) with high-nickel-content cathode material by a solid-sate complexation method, and it manifests a lot slower capacity and voltage attenuation during prolong cycling compared to Li1.5Mn0.66Ni0.17Co0.17O2.5 (Li1.2Mn0.54Ni0.13Co0.13O2) and Li1.5Mn0.65Ni0.25Co0.1O2.5 (Li1.2Mn0.52Ni0.2Co0.08O2) cathode materials. The capacity retention at 1 C after 100 cycles reaches to 87.5% and the voltage attenuation after 100 cycles is only 0.460 V. Combining X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), it indicates that increasing the nickel content not only stabilizes the structure but also alleviates the attenuation of capacity and voltage. Therefore, it provides a new idea for designing of Li-rich layered oxide cathode materials that suppress voltage and capacity attenuation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA