Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 20133-20148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372914

RESUMO

Microcystins (MCs) are the most widespread and hazardous cyanotoxins posing a huge threat to agro-ecosystem by irrigation. Some adaptive metabolisms can be initiated at the cellular and molecular levels of plant to survive environmental change. To find ways to improve plant tolerance to MCs after recognizing adaptive mechanism in plant, we studied effects of MCs on root morphology, mineral element contents, root activity, H+-ATPase activity, and its gene expression level in cucumber during exposure and recovery (without MCs) periods. After being exposed to MCs (1, 10, 100 and 1000 µg L-1) for 7 days, we found 1 µg L-1 MCs did not affect growth and mineral elements in cucumber. MCs at 10 µg ·L-1 increased root activity and H+-ATPase activity partly from upregulation of genes (CsHA2, CsHA3, CsHA8, and CsHA9) expression, to promote nutrient uptake. Then, the increase in NO3-, Fe, Zn, and Mn contents could contribute to maintaining root growth and morphology. Higher concentration MCs (100 or 1000 µg L-1) inhibited root activity and H+-ATPase activity by downregulating expression of genes (CsHA2, CsHA3, CsHA4, CsHA8, CsHA9, and CsHA10), decreased contents of nutrient elements except Ca largely, and caused root growing worse. After a recovery, the absorption activity and H+-ATPase activity in cucumber treated with10 µg L-1 MCs were closed to the control whereas all parameters in cucumber treated 1000 µg L-1 MCs were even worse. All results indicate that the increase in H+-ATPase activity can enhance cucumber tolerance to MC stress by regulating nutrient uptake, especially when the MCs occur at low concentrations.


Assuntos
Cucumis sativus , Microcistinas/metabolismo , Ecossistema , ATPases Translocadoras de Prótons/metabolismo , Membrana Celular/metabolismo , Minerais/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA