Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 268: 115717, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992643

RESUMO

OBJECTIVE: Fine particulate matter (PM2.5) is a source of pollution worldwide, that causes inflammation and liver fibrosis. Melatonin, as the predominant hormone secreted by the pineal gland, can inhibit PM2.5-induced lung injury by activating nuclear factor erythroid 2-related factor 2 (Nrf2) to inhibit ferroptosis. However, the possible role of melatonin in PM2.5-induced liver damage remains unclear. EXPERIMENTAL APPROACH: In vitro, the effects of melatonin on PM2.5-induced oxidative stress and LX-2 cell activation were examined. In vivo, a PM2.5-induced inflammation and liver fibrosis mouse model was used to evaluate the hepatoprotective effect of melatonin. RESULTS: In vitro, melatonin induced the expression of Nrf2 and its downstream genes and inhibited PM2.5-induced reactive oxygen species (ROS) production and mitochondrial damage. Melatonin also ameliorated the PM2.5-induced oxidative stress and fibrogenic marker upregulation. However, the antifibrotic effect of melatonin was abolished in siNrf2-treated LX-2 cells. In vivo, we observed mitochondrial abnormalities and mitochondrial fragmentation, which were accompanied by increased PTEN-induced kinase 1 (PINK1) and Parkin expression, in PM2.5-treated mouse hepatocytes. These changes were partially reversed by melatonin. In addition, melatonin activated the Nrf2 signaling pathway and protected against PM2.5-induced oxidative stress. Furthermore, melatonin alleviated inflammation and liver fibrosis. Moreover, Nrf2-KO mice exhibited more severe inflammation and liver fibrosis after PM2.5 exposure than wild-type mice, and the protective effect of melatonin on PM2.5- treated Nrf2-KO mice was greatly compromised. CONCLUSION: These data suggest that melatonin effectively inhibits PM2.5-induced liver fibrosis by activating Nrf2 and inhibiting ROS-mediated mitophagy and inflammation.


Assuntos
Melatonina , Material Particulado , Animais , Camundongos , Inflamação/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Melatonina/metabolismo , Melatonina/farmacologia , Mitofagia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo
2.
Ecotoxicol Environ Saf ; 245: 114083, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36137421

RESUMO

Urban airborne fine particulate matter (PM2.5) is a global pollution source that has been strongly related to multiple respiratory diseases involving various types of regulated cell death (RCD). However, the role of ferroptosis, a novel form of RCD, in PM2.5-induced acute lung injury (ALI), has not been elucidated. Herein, we define the role and mechanism of ferroptosis in a PM2.5-induced ALI model. First, we demonstrated that lipid peroxidation and iron accumulation were significantly enhanced in ALI models and were accompanied by activation of the AMP-activated protein kinase (AMPK)-Beclin1 signaling pathway and inhibition of the key subunit SLC7A11 of System Xc-. However, these abnormalities were partially reversed by ferroptosis inhibitors. We further revealed that Beclin1 knockdown or overexpression ameliorated or exacerbated PM2.5-induced ferroptosis, respectively. Mechanistically, we verified that Beclin1 blocks System Xc- activity to trigger ferroptosis by directly binding to SLC7A11. Finally, knockdown of Beclin1 by AAV-shRNA or inhibition of AMPK, an upstream activator of Beclin1, ameliorated PM2.5-induced ferroptosis and ALI. Taken together, our results revealed that ferroptosis plays a novel role in PM2.5-induced ALI and elucidated the specific mechanism involving the AMPK-Beclin1 pathway and System Xc-, which may provide new insight into the toxicological effects of PM2.5 on respiratory problems.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Humanos , Ferro/metabolismo , Material Particulado/toxicidade , RNA Interferente Pequeno
3.
Food Chem Toxicol ; 184: 114362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101601

RESUMO

Fine particulate matter (PM2.5) is a primary air pollutant recognized worldwide as a serious threat to public health. PM2.5, which has a diameter of less than 2.5 µm, is known to cause various diseases, including cardiovascular, respiratory, metabolic, and neurological diseases. Studies have shown that the respiratory system is particularly susceptible to PM2.5 as it is the first line of defense against external pollutants. PM2.5 can cause oxidative stress, which is triggered by the catalyzation of biochemical reactions, the activation of oxidases and metabolic enzymes, and mitochondrial dysfunction, all of which can lead to lung injury and aggravate various respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and cancer. Oxidative stress plays a crucial role in the harmful effects and mechanisms of PM2.5 on the respiratory system by activating several detrimental pathways related to inflammation and cellular damage. However, experimental studies have shown that antioxidative therapy methods can effectively cure PM2.5-induced lung injury. This review aims to clarify how PM2.5 induces oxidative stress and the mechanisms by which it is involved in the aggravation of various lung diseases. Additionally, we have listed antioxidant treatments to protect against PM2.5-induced lung injury.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Pulmão , Estresse Oxidativo , Material Particulado/toxicidade , Fibrose Pulmonar/patologia , Antioxidantes/farmacologia
4.
Int Immunopharmacol ; 115: 109658, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608444

RESUMO

PM2.5 is one of the main harmful environmental pollutants and can damage nasal epithelial carriers to worsen allergic rhinitis. Ferroptosis is a novel form of regulated cell death with iron-dependent lipid peroxidation. However, whether ferroptosis is involved in PM2.5-induced nasal epithelial injury has not been elucidated. To verify the vital role of ferroptosis in PM2.5-induced nasal epithelial injury and further explore the potential mechanism, we detected intracellular iron content, ROS release and lipid peroxidation and ferroptosis-related proteins in vitro as well as the pathological changes in the nasal epithelium and the levels of proinflammatory factors in nasal lavage fluid in vivo. Our results showed that PM2.5 exposure led to oxidative stress, labile iron accumulation and lipid peroxidation in HNEPCs. In addition, the expression levels of xCT, GPx4, FTH1 and FTL in HNEPCs were greatly inhibited by PM2.5. Treatment with the ferroptosis inhibitors deferoxamine (DFO) and ferrostatin-1 (Fer-1) significantly reversed the toxicity of PM2.5 to human nasal epithelial cells (HNEPCs). Mechanistically, AMPK-mediated autophagy was initiated during PM2.5 exposure, which drove ferroptosis of HNEPCs. Autophagy inhibitor remarkably improved cell death, oxidative stress, labile iron accumulation, lipid peroxidation, and the downregulated expression of xCT, GPx4, FTH1 and FTL in HNEPCs induced by PM2.5. Furthermore, an AMPK inhibitor (Compound C, CC) and siRNA-AMPKα suppressed autophagy activation and ferroptosis stimulated by PM2.5. In vivo, Fer-1 reduced nasal epithelial injury and mucus secretion in PM2.5-exposed mice. In addition, CC significantly improved nasal epithelial damage and proinflammatory factor production in mice caused by PM2.5 intranasal treatment. In addition, CC greatly inhibited autophagy activation but reversed the downregulation of GPX4 and FTH1 induced by PM2.5 in the nasal epithelium of mice. Together, these data suggest that AMPK-mediated autophagy plays an important role in PM2.5-induced ferroptosis and that AMPK might be a potential treatment target for PM2.5-induced nasal epithelial injury.


Assuntos
Ferroptose , Humanos , Camundongos , Animais , Proteínas Quinases Ativadas por AMP , Ferro/metabolismo , Autofagia , Material Particulado/toxicidade
5.
Biomed Pharmacother ; 165: 115097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406514

RESUMO

OBJECTIVE: Acetaminophen (APAP) is one of the world's popular and safe painkillers, and overdose can cause severe liver damage and even acute liver failure. The effect and mechanism of the xanthohumol on acetaminophen-induced hepatotoxicity remains unclear. METHODS: The hepatoprotective effects of xanthohumol were studied using APAP-induced HepG2 cells and acute liver injury of mouse, seperately. RESULTS: In vitro, xanthohumol inhibited H2O2- and acetaminophen-induced cytotoxicity and oxidative stress. Xanthohumol up-regulated the expression of Nrf2. Further mechanistic studies showed that xanthohumol triggered Nrf2 activation via the AMPK/Akt/GSK3ß pathway to exert a cytoprotective effect. In vivo, xanthohumol significantly ameliorated acetaminophen-induced mortality, the elevation of ALT and AST, GSH depletion, MDA formation and histopathological changes. Xanthohumol effectively suppressed the phosphorylation and mitochondrial translocation of JNK, mitochondrial translocation of Bax, the activation o cytochrome c, AIF secretion and Caspase-3. In vivo, xanthohumol increased Nrf2 nuclear transcription and AMPK, Akt and GSK3ß phosphorylation in vivo. In addition, whether xanthohumol protected against acetaminophen-induced liver injury in Nrf2 knockout mice has not been illustated. CONCLUSION: Thus, xanthohumol exerted a hepatoprotective effect by inhibiting oxidative stress and mitochondrial dysfunction through the AMPK/Akt/GSK3ß/Nrf2 antioxidant pathway.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Glicogênio Sintase Quinase 3 beta/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Fígado , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
6.
ACS Omega ; 6(16): 10975-10983, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34056250

RESUMO

Allosteric proteins are considered as one of the most critical targets to design cell factories via synthetic biology approaches. Here, we proposed a molecular dynamics-based allosteric prediction method (MBAP) to screen indirect-binding sites and potential mutations for protein re-engineering. Using this MBAP method, we have predicted new sites to relieve the allosteric regulation of threonine dehydrogenase (TD) by isoleucine. An obtained mutation P441L has been verified with the ability to significantly reduce the allosteric regulation of TD in vitro assays and with the fermentation application in vivo for amino-acid production. These findings have proved the MBAP method as an effective and efficient predicting tool to find new positions of the allosteric enzymes, thus opening a new path to constructing cell factories in synthetic biology.

7.
Polymers (Basel) ; 11(4)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30960592

RESUMO

Microfluidic chips have been widely applied in biochemical analysis, DNA sequencing, and disease diagnosis due to their advantages of miniaturization, low consumption, rapid analysis, and automation. Injection molded microfluidic chips have attracted great attention because of their short processing time, low cost, and mass production. The microchannel is the critical element of a microfluidic chip, and thus the microchannel replicability directly affects the performance of the microfluidic chip. In the current paper, a new method is proposed to evaluate the replicability of the microchannel profile via the root mean square value of the actual profile curve and the ideal profile curve of the microchannel. To investigate the effects of injection molding parameters (i.e., mold temperature, melting temperature, holding pressure, holding time, and injection rate) on microchannel replicability, a series of single-factor experiments were carried out. The results showed that, within the investigated experimental range, the increase of mold temperature, melt temperature, holding pressure, holding time, and injection rate could improve microchannel replicability accuracy. Specifically, the microchannels along the flow direction of the polymer melt were significantly affected by the mold temperature and melt temperature. Moreover, the replicability of the microchannel was influenced by the distance from the injection gate. The effect of microchannel replication on electrophoresis was demonstrated by a protein electrophoresis experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA