Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Thorac Oncol ; 16(5): 827-839, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33588113

RESUMO

INTRODUCTION: By implementing dynamic circulating tumor DNA (ctDNA) analysis, we explored the impact of TP53 mutations on tumor evolution and resistance mechanisms to ensartinib in patients with ALK-positive NSCLC. METHODS: In a multicenter phase 2 trial, patients with ALK-positive NSCLC who progressed on crizotinib were treated with ensartinib. Blood samples for ctDNA analysis were collected at baseline, cycle 3 day 1, and progression disease (PD) and analyzed with a 212-gene panel. RESULTS: A total of 440 samples were collected from 168 patients. Baseline TP53 mutations (20.2%) significantly correlated with inferior progression-free survival (4.2 mo versus 11.7 mo, p < 0.0001). Patients with TP53 mutations had higher mutation load than those without TP53 mutations at baseline (13.79 ± 3.72 versus 4.67 ± 0.39, p < 0.001). Although there was no significant difference in mutation load between these groups at cycle 3 day 1 (5.89 ± 2.25 versus 3.72 ± 0.62, p = 0.425), patients with mutated TP53 developed more mutations at PD (7.07 ± 1.25 versus 3.20 ± 0.33, p = 0.003). Frequency and abundance of secondary ALK mutations G1269A, G1202R, and E1210K increased markedly at PD than baseline. In patients without secondary ALK mutations, we identified ALK-independent resistance mechanisms including bypass signaling activation, downstream effector protein reactivation, epithelial-mesenchymal transformation, and epigenetic dysregulation. CONCLUSIONS: Our study highlighted the advantage of ctDNA analysis for monitoring tumor evolution. TP53 mutations promoted genetic evolution and accelerated occurrence of resistance. We also unveiled ALK-dependent resistance mechanisms, mainly by G1269A, G1202R, and E1210K mutations, and ALK-independent resistance mechanisms to ensartinib.


Assuntos
DNA Tumoral Circulante , Neoplasias Pulmonares , Quinase do Linfoma Anaplásico/genética , DNA Tumoral Circulante/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Piperazinas , Inibidores de Proteínas Quinases/farmacologia , Piridazinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA