Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043317

RESUMO

Climate change is considered to increase economic costs by worsening heat-related labor productivity loss. While extensive global and national research has been conducted on this topic, few studies have analyzed subnational and individual economic impacts, potentially weakening local governments' motivation to tackle climate change. Figuring out the most affected regions and labors could help climate policymakers to identify priority regions and sectors to allocate adaptation resources efficiently, and enhance stakeholder engagement. This study adopted a provincial Computable General Equilibrium model by distinguishing different labors and regions in modelling work to address the aforementioned gap. The study estimated economic costs at different level under three climate change scenarios (lower (SSP126), middle (SSP245), and higher (SSP585) warming scenario). Low-income regions located in southwest part of China (such as Guangxi and Guizhou), would experience the largest economic loss, 3.4-7.1 times higher than high-income in China by 2100 under SSP245 scenario. Additionally, wages for labors highly sensitive to heat in these regions are expected to rise, for example, by an 8.3% rise in Guangxi, driven by the rising demand for these labors. Conversely, others would experience a significant wage decrease, especially those with less sensitivity (e.g., managers). Therefore, we recommended that national financial supports be allocated more to these most affected regions and that government encourage managers provide assistance to workers vulnerable to heat.


Assuntos
Mudança Climática , Renda , Humanos , China , Pobreza , Eficiência
2.
Biodegradation ; 34(5): 445-459, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37043132

RESUMO

Six cadmium (Cd)-resistant microbial strains were isolated and their ability to immobilise Cd2+ in soil investigated. Cd-1, Cd-2, Cd-5, and Cd-6 were identified as Stenotrophomonas sp., Cd-3 as Achromobacter sp., and Cd-7 as Staphylococcus sp. The six strains showed a wide adaptation range for salinity and a strong tolerance to Cd2+. The effects of the initial Cd2+ concentration (1-100 mg/L), duration (18-72 h), temperature (10-40 °C), and pH (5.0-9.0) on the efficiency of Cd2+ removal were analysed. The results revealed that the Cd2+ removal rate was higher at an initial Cd2+ concentration of 5-100 mg/L than at 1 mg/L. The maximum Cd2+ removal effect was at a culture duration of 36 h, temperature of 10-35 °C, and pH of 5.0-7.0. X-ray diffraction (XRD) analysis revealed that the Cd2+ was immobilised by Stenotrophomonas sp. Cd-2 and Staphylococcus sp. Cd-7 through bio-precipitation. X-ray photoelectron spectroscopy (XPS) revealed that the Cd2+ was adsorbed by Stenotrophomonas sp. Cd-2, Achromobacter sp. Cd-3, and Staphylococcus sp. Cd-7. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the isolates reacted with the Cd2+ mainly through the O-H, protein N-H, C-N, lipid C-H, fatty acid COO, polysaccharide C-O, P-O, and other functional groups, as well as with lipid molecules on the cell wall surfaces. Scanning electron microscopy (SEM) analysis revealed that there was little difference in the cells after Cd2+ treatment. The results of the soil remediation experiments indicated that the toxicity of Cd in soil could be effectively reduced using certain strains of microbe.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/farmacologia , Cádmio/análise , Cádmio/metabolismo , Solo , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Lipídeos
3.
Sci Total Environ ; 898: 165478, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451437

RESUMO

Mechanical stability of soil aggregates is important for resisting external disturbances in slope soils. Biochar (BC) is widely used in slope remediation. However, biochar application may not be conducive to the formation of mechanical-stable soil aggregates, and the effects of biochar additions on the mechanical stability of soil aggregates in slope restoration remain largely unclear. In this context, an incubation experiment was conducted in this study with four biochar levels added to artificial soil, namely 0 % (BC0), 1.5 % (BC1), 3 % (BC2), and 4.5 % (BC3), corresponding approximately to 0, 0.77, 1.53 and 2.30 M ha-1, respectively. The contributions of different soil aggregate fractions to maintaining the mechanical stability of aggregates, as well as the main influencing factors and pathways of biochar additions on soil aggregate stability in a dynamic renewal process of aggregates, were investigated in this study. The results showed a decreasing trend in the mean weight diameter (MWD) with increasing biochar levels and BC1 has no significant difference with BC0, showing MWD values of 2.74 and 2.75, respectively. In contrast, BC3 is significantly lower MWD value of 2.18. The BC3 exhibited negative impact on the mechanical stability of the aggregates. Redundancy analysis (RDA) showed that large macroaggregates (>5 mm) exhibited a stronger contribution on the aggregate mechanical stability between all soil aggregate fractions. The random forest (RF) algorithm and structural equation modeling (SEM) indicated that microaggregate-associated soil organic carbon (SOC) contents and soil pH values were the main factors driving the changes in the aggregate mechanical stability caused by biochar applications. Indeed, the biochar level of 1.5 % maintained the stability of macroaggregates and increased the microaggregate-associated SOC content by 35.7 %, which was conducive to the formation of microaggregates within macroaggregates. Our study suggests that the application of biochar at a level of 1.5 % is more beneficial for maintaining the mechanical stability of artificial soil aggregates.

4.
Front Oncol ; 13: 1175151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293593

RESUMO

Purpose: Silent mating type information regulator 2 homolog 1 (SIRT1) and autophagy have a two-way action (promoting cell death or survival) on the progression and treatment of gastric cancer (GC) under different conditions or environments. This study aimed to investigate the effects and underlying mechanism of SIRT1 on autophagy and the malignant biological behavior of GC cells under conditions of glucose deprivation (GD). Materials and methods: Human immortalized gastric mucosal cell GES-1 and GC cell lines SGC-7901, BGC-823, MKN-45 and MKN-28 were utilized. A sugar-free or low-sugar (glucose concentration, 2.5 mmol/L) DMEM medium was used to simulate GD. Additionally, CCK8, colony formation, scratches, transwell, siRNA interference, mRFP-GFP-LC3 adenovirus infection, flow cytometry and western blot assays were performed to investigate the role of SIRT1 in autophagy and malignant biological behaviors (proliferation, migration, invasion, apoptosis and cell cycle) of GC under GD and the underlying mechanism. Results: SGC-7901 cells had the longest tolerance time to GD culture conditions, which had the highest expression of SIRT1 protein and the level of basal autophagy. With the extension of GD time, the autophagy activity in SGC-7901 cells also increased. Under GD conditions, we found a close relationship between SIRT1, FoxO1 and Rab7 in SGC-7901 cells. SIRT1 regulated the activity of FoxO1 and upregulated the expression of Rab7 through deacetylation, which ultimately affected autophagy in GC cells. In addition, changing the expression of FoxO1 provided feedback on the expression of SIRT1 in the cell. Reducing SIRT1, FoxO1 or Rab7 expression significantly inhibited the autophagy levels of GC cells under GD conditions, decreased the tolerance of GC cells to GD, enhanced the inhibition of GD in GC cell proliferation, migration and invasion and increased apoptosis induced by GD. Conclusion: The SIRT1-FoxO1-Rab7 pathway is crucial for the autophagy and malignant biological behaviors of GC cells under GD conditions, which could be a new target for the treatment of GC.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35329174

RESUMO

In order to explore the spatiotemporal evolution of land use function and its driving factors in China, taking both sides of the Hu Line as an example, we used Exploratory Spatial Data Analysis and Geographically Weighted Regression methods to reveal dynamic evolution law, spatial characteristics and influencing factors of the "Production-Living-Ecology" functions of 288 prefecture-level cities on both sides of the Hu Line. The results show that: (1) In the temporal dimension, the coordination of "Production-Living-Ecology" functions of land use in China has been improved, and the Hu Line can be roughly used as the boundary of China's territorial space use. (2) In the spatial dimension, there is a significant positive spatial correlation between "Production-Living-Ecology" functions of land use in China, and the coordination gap between "Production-Living-Ecology" functions of land use on both sides of the Hu Line is gradually narrowing. (3) In terms of influencing mechanism, the coordination of "Production-Living-Ecology" functions is mainly driven by internal factors and is supplemented by external ones. The influence pattern of most driving factors is consistent with the layout characteristics of "strong east and weak west" of the Hu Line.


Assuntos
Ecologia , Regressão Espacial , China , Cidades , Análise Espacial
6.
Artigo em Inglês | MEDLINE | ID: mdl-33504043

RESUMO

Urban resilience in the context of COVID-19 epidemic refers to the ability of an urban system to resist, absorb, adapt and recover from danger in time to hedge its impact when confronted with external shocks such as epidemic, which is also a capability that must be strengthened for urban development in the context of normal epidemic. Based on the multi-dimensional perspective, entropy method and exploratory spatial data analysis (ESDA) are used to analyze the spatiotemporal evolution characteristics of urban resilience of 281 cities of China from 2011 to 2018, and MGWR model is used to discuss the driving factors affecting the development of urban resilience. It is found that: (1) The urban resilience and sub-resilience show a continuous decline in time, with no obvious sign of convergence, while the spatial agglomeration effect shows an increasing trend year by year. (2) The spatial heterogeneity of urban resilience is significant, with obvious distribution characteristics of "high in east and low in west". Urban resilience in the east, the central and the west are quite different in terms of development structure and spatial correlation. The eastern region is dominated by the "three-core driving mode", and the urban resilience shows a significant positive spatial correlation; the central area is a "rectangular structure", which is also spatially positively correlated; The western region is a "pyramid structure" with significant negative spatial correlation. (3) The spatial heterogeneity of the driving factors is significant, and they have different impact scales on the urban resilience development. The market capacity is the largest impact intensity, while the infrastructure investment is the least impact intensity. On this basis, this paper explores the ways to improve urban resilience in China from different aspects, such as market, technology, finance and government.


Assuntos
COVID-19 , Análise Espaço-Temporal , Reforma Urbana , China , Cidades , Humanos , Pandemias
7.
Chemosphere ; 246: 125687, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31918080

RESUMO

In the subalpine mountainous region of southwest China, the artificial soil properties of restored cut slopes along the altitude gradient were studied, including available nitrogen (AN), available phosphorus (AP), available potassium (AK), urease (UR), sucrase (SC), protease (PR), catalase (CAT), texture, and aggregate stability of soil. Soil aggregatet stability by mean weight diameter (MWD), geometric mean diameter (GMD), structure failure rate (P), index of unstable aggregates (IUA) and area difference of dry and wet sieve cumulative distribution curve (ΔS) were measured and analyzed. It was found that available soil nutrients, UR, and CAT activities increased initially and then decreased, but the texture of soil was finer, and aggregate structure tended to be more stable along with an increase in the altitude gradient. The soil aggregate stability index that MWD, GMD, P, IUA, and ΔS indicated that the higher the altitude, the stability of soil aggregates was better. Principal component analysis (PCA) was used to determine the soil quality index (SQI). The obtained results from this study showed that the artificial soil quality of the cut slopes was better at a higher altitude compared to a lower altitude. These results provide a reference for the improvement of artificial soil properties of cut slopes and their quality in the future. It is necessary to pay attention to the soil quality management at a low-altitude area and reform the soil nutrients, enzyme activities, and soil structure for the restored cut slopes in the mountainous subalpine highway of southwest China.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Solo/química , Altitude , Carbono/química , China , Nutrientes , Potássio
8.
Sci Total Environ ; 671: 41-51, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30927726

RESUMO

The stability of slope is strengthened by the metal mesh. The studies of the life span and influencing factors of metal mesh in the artificial soil in humid areas will guide ecological restoration of rock-cut slopes in Southwest China. Due to metal corrosion, the fixation function of the metal mesh could last for 10 years. The factors of soil contents, soil electrochemical properties and soil bacteria not only changed with the vegetation succession but also weakened the effect of the metal mesh on soil fixation for slope protection. The potential gradient, chloride ion content, sulfate ion content and water content were the main influencing factors for metal mesh corrosion during the vegetation restoration stage from 0 to 5 years, while the corrosion potential, potential gradient, chloride ion content, and water content were the main influential factors for metal mesh corrosion during the vegetation restoration stage after 11 years. At different vegetation restoration stages, the soil bacteria contained different dominant species, which had spatial heterogeneity, and the heterogeneity of the soil bacteria was another factor influencing the corrosion of the buried metal mesh. Meanwhile, the plant root as a soil fixation function strengthened with time, and 8 years later, the local woody plants gradually migrated to form a community dominated by multiple woody species. It is the first time that the life span of a metal mesh under the artificial soil of rock-cut slopes and factors affecting the different corrosion stages of the metal mesh in a humid area have been judged. The fixation function of plant root gradually replaces metal mesh, and main factors affecting the process include soil contents, soil electrochemical properties and soil bacteria. The research on corrosion factors of metal mesh under artificial soil for rock-cut slopes will contribute towards reducing the environmental risk of ecological restoration.


Assuntos
Monitoramento Ambiental , Metais/análise , Poluentes do Solo/análise , Solo/química , Biodiversidade , China , Plantas , Ferrovias
9.
Sci Rep ; 8(1): 12109, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108289

RESUMO

External-soil spray seeding (ESSS), a technique of spraying artificial soil materials onto bare slopes for vegetation cover construction, has been widely used to restore rock-cut slopes. However, studies on the effect of the practical application of this technique on different topographic aspects have been rarely performed. In this study, two topographic aspects, namely, north-facing versus south-facing, were investigated under two railway lines, and two local natural slopes (north-facing versus south-facing) were selected as references. Vegetation and soil conditions, which are paramount aspects of ecological restoration assessment, were characterized in terms of the richness and diversity indices, vegetation canopy cover, basic soil physico-chemical properties, and structural characteristics of these slopes. Results showed that (1) the topographic aspect significantly affected the vegetation restoration and artificial soil quality of rock-cut slopes restored by ESSS; (2) the ecological restoration effect of north-facing slopes were better than that of south-facing slopes; and (3) the vegetation and soil conditions of natural slopes were better than those of rock-cut slopes. Therefore, additional scientific management measures should be implemented to promote the ecological restoration of rock-cut slopes, especially for south-facing slopes.


Assuntos
Recuperação e Remediação Ambiental/métodos , Dispersão Vegetal , Solo/química , China , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA