RESUMO
Textile printing and dyeing wastewater is a substantial source of highly toxic halogenated pollutants because of the chlorination decolorization. However, information on the occurrence and fate of the highly toxic halogenated byproducts, which are produced by chlorination decolorization of the textile printing and dyeing wastewater, is very limited. In this study, the occurrence of six categories of halogenated byproducts (haloacetic acids (HAAs), haloacetonitriles (HANs), N-nitrosamines (NAs), trihalomethanes, halogenated ketones, and halonitromethanes) was investigated along the full-scale treatment processes of textile printing and dyeing wastewater treatment plants. Furthermore, the ecological risk of the halogenated byproducts was evaluated. The results showed that the total concentration of halogenated byproducts increased significantly after chlorination. Large amounts of HAAs (average 122.1 µg/L), HANs (average 80.9 µg/L), THMs (average 48.3 µg/L), and NAs (average 2314.3 ng/L) were found in the chlorinated textile wastewater, and the results showed that the generations of HANs and NAs were positively correlated with the BIX and ß/α index, indicating that the HANs and NAs might form from the microbial metabolites. In addition, HAAs and HANs exhibited high ecological risk quotients (>1), suggesting their high potential ecological risk. The results also demonstrated that most halogenated byproducts could be effectively removed by reverse osmosis treatment processes except NAs, with a lower removal rate of 18%. This study is believed to provide an important theoretical basis for controlling and reducing the ecological risks of halogenated byproducts in textile printing and dyeing wastewater effluents.
Assuntos
Halogenação , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/química , Medição de Risco , Indústria Têxtil , Impressão , Corantes/química , TêxteisRESUMO
The nanoscale zinc oxide (n-ZnO) was used in food packages due to its superior antibacterial activity, resulting in potential intake of n-ZnO through the digestive system, wherein n-ZnO interacted with saliva. In recent, facet engineering, a technique for controlling the exposed facets, was applied to n-ZnO, whereas risk of n-ZnO with specific exposed facets in saliva was ignored. ZnO nanoflakes (ZnO-0001) and nanoneedles (ZnO-1010) with the primary exposed facets of {0001} and {1010} respectively were prepared in this study, investigating stability and toxicity of ZnO-0001 and ZnO-1010 in synthetic saliva. Both ZnO-0001 and ZnO-1010 partially transformed into amorphous Zn3(PO4)2 within 1 hr in the saliva even containing orgnaic components, forming a ZnO-Zn3(PO4)2 core-shell structure. Nevertheless, ZnO-1010 relative to ZnO-0001 would likely transform into Zn3(PO4)2, being attributed to superior dissolution of {1010} facet due to its lower vacancy formation energy (1.15 eV) than {0001} facet (3.90 eV). The toxicity of n-ZnO to Caco-2 cells was also dependent on the primary exposed facet; ZnO-0001 caused cell toxicity through oxidative stress, whereas ZnO-1010 resulted in lower cells viability than ZnO-0001 through oxidative stress and membrane damage. Density functional theory calculations illustrated that ·O2- was formed and released on {1010} facet, yet O22- instead of ·O2- was generated on {0001} facet, leading to low oxidative stress from ZnO-0001. All findings demonstrated that stability and toxicity of n-ZnO were dependent on the primary exposed facet, improving our understanding of health risk of nanomaterials.
Assuntos
Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Células CACO-2 , Saliva , Estresse OxidativoRESUMO
Per- and polyfluoroalkyl substances (PFASs), including perfluorohexanesulfonic acid (PFHxS), as emerging persistent organic pollutants widely detected in drinking water, have drawn increasing concern. The PFHxS contamination of drinking water always results from direct and indirect sources, especially the secondary generations through environmental transformations of precursors. However, the mechanism of the transformation of precursors to PFHXS during the drinking water treatment processes remains unclear. Herein, the potential precursors and formation mechanisms of PFHxS were explored during drinking water disinfection. Simultaneously, the factors affecting PFHxS generation were also examined. This study found PFHxS could be generated from polyfluoroalkyl sulfonamide derivatives during chlorination and chloramination. The fate and yield of PFHxS varied from different precursors and disinfection processes. In particular, monochloramine more favorably formed PFHxS. Several perfluoroalkyl oxidation products and decarboxylation intermediates were detected and identified in the chloraminated samples using Fourier-transform ion cyclotron resonance mass spectrometry. Combined with density functional theory calculations, the results indicated that the indirect oxidation via the attack of the nitrogen atom in sulfonamide groups might be the dominant pathway for generating PFHxS during chloramination, and the process could be highly affected by the monochloramine dose, pH, and temperature. This study provides important evidence of the secondary formation of PFHxS during drinking water disinfection and scientific support for chemical management of PFHxS and PFHxS-related compounds.
Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Poluentes Químicos da Água/análise , Desinfecção , Sulfonamidas/análise , Halogenação , Purificação da Água/métodos , Sulfanilamida/análise , Desinfetantes/análiseRESUMO
Semiconductor photocatalysis has become an increasing area of interest for use in water treatment methods. This review systematically presents the recent developments of emerging semiconductor photocatalysis system and their application in the removal of water pollutants. A brief overview of the semiconductor photocatalysis mechanism involved with the generation of reactive oxygen species (ROS) is provided first. Then a detailed explanation of the development of TiO2-based, g-C3N4-based, and bismuth-based semiconductor materials and their applications in the degradation of water pollutants are highlighted with recent illustrative examples. Furthermore, the future prospects of semiconductor photocatalysis for water treatment are critically analyzed.
RESUMO
Direct emissions from fluorochemical manufactory are an important source of per- and polyfluoroalkyl substances (PFASs) to the environment. In this study, a wide range of PFASs, including 8 legacy PFASs, 8 long-chain perfluoroalkyl carboxylic acids (PFCAs), and 40 emerging PFASs, were investigated through a target screening in multienvironmental matrices from a fluorochemical manufactory in China. Indoor dust was the most polluted matrix, wherein 52 PFASs were detected, and the median concentration of long-chain PFCA was 276 ng/g. A high level of short-chain PFAS in total suspended particles (median concentration = 416 ng/m3) and the effluent in the manufactory (Σ48PFAS = 212 µg/L) will undoubtedly increase the burden on the surrounding environment. Twenty-four industrial byproducts were ascertained to be generated during the electrochemical fluorination (ECF) process, and eight fluorinated alternatives were considered to be produced during product development. Twelve PFASs were quantified for the first time in the working environments. Perfluoropropane sulfonic acid, perfluoro (2-ethoxyethane) sulfonic acid (PFEESA), and 2-perfluorohexyl ethanoic acid are abundant fluorinated alternatives, with median levels of 1187-17204 ng/g in the dust. Significant positive correlations between ECF-related PFAS products and byproducts indicate that the detected values are strongly connected with the industrial source. Hierarchical cluster analysis further manifests their affiliation. Our findings raise the need for further investigations of emerging PFAS (including the first report of PFAS, such as PFEESA, in the environment) which may be released during the production process in the fluorochemical manufactories.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Monitoramento Ambiental , Ácidos Carboxílicos/análise , Poeira/análise , Ácidos Sulfônicos/análise , China , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análiseRESUMO
As a major entry point of mercury (Hg) to aquatic food webs, algae play an important role in taking up and transforming Hg species in aquatic ecosystems. However, little is known how and to what extent Hg reduction, uptake, and species transformations are mediated by algal cells and their exudates, algal organic matter (AOM), under either sunlit or dark conditions. Here, using Chlorella vulgaris (CV) as one of the most prevalent freshwater model algal species, we show that solar irradiation could enhance the reduction of mercuric Hg(II) to elemental Hg(0) by both CV cells and AOM. AOM reduced more Hg(II) than algal cells themselves due to cell surface adsorption and uptake of Hg(II) inside the cells under solar irradiation. Synchrotron radiation X-ray absorption near-edge spectroscopy (SR-XANES) analyses indicate that sunlight facilitated the transformation of Hg to less bioavailable species, such as ß-HgS and Hg-phytochelatins, compared to Hg(Cysteine)2-like species formed in algal cells in the dark. These findings highlight important functional roles and potential mechanisms of algae in Hg reduction and immobilization under varying lighting conditions and how these processes may modulate Hg cycling and bioavailability in the aquatic environment.
Assuntos
Chlorella vulgaris , Mercúrio , Compostos de Metilmercúrio , Transporte Biológico , Chlorella vulgaris/metabolismo , Ecossistema , Água Doce , Mercúrio/química , Compostos de Metilmercúrio/metabolismoRESUMO
Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3-/-, Mlkl-/-, or Fadd-/-Mlkl-/- mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated up-regulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated in mitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.
Assuntos
Apoptose , Cardiomiopatias/prevenção & controle , Ferro/metabolismo , Animais , Cardiomiopatias/induzido quimicamente , Doxorrubicina/farmacologia , Doxorrubicina/toxicidade , Heme/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Traumatismo por Reperfusão/prevenção & controle , Regulação para CimaRESUMO
The use of nanoscale zinc oxide (n-ZnO) in the personal care products would cause interactions between n-ZnO and human sweat. Facet engineering has been applied to n-ZnO to improve its activity. Nevertheless, it is not clear whether the exposed facet would affect transformation of n-ZnO in sweat. Herein, we prepared ZnO nanoneedles with the dominant (1010) non-polar facet (i.e., ZnO-1010) and ZnO nanoflakes with the dominant (0001) polar facet (i.e., ZnO-0001), respectively. We found that n-ZnO can undergo chemical transformation in the simulated sweat within 168 h or 24 h, transforming into amorphous materials and Zn3(PO4)20.4 H2O and/or Na(ZnPO4)·H2O. Given the rate constant (e.g., 0.093 h-1 for ZnO-0001 vs. 0.033 h-1 for ZnO-1010) of ZnO depletion and components of the precipitate from the simulated sweat, nevertheless, the transformation is highly dependent on the dominant exposed facet of n-ZnO. The ZnO-0001 relative to ZnO-1010 would likely undergo chemical transformation, demonstrating that the (0001) polar facet compared to (1010) non-polar facet had a superior activity to the dihydrogen phosphate anions in the simulated sweat, which is supported by density functional theory calculations. The chemical transformation can affect the antibacterial activity of n-ZnO to E. coli, moderating the toxicity due to a great decrease in the concentration of the dissolved zinc. In total, our findings provided insights into the facet-dependent transformation for n-ZnO in the simulated sweat, improving our understanding of potential risk of n-ZnO.
Assuntos
Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Escherichia coli , Suor , Antibacterianos/farmacologia , Fosfatos/farmacologiaRESUMO
Pristine alpine regions are ideal regions for investigating the long-range atmospheric transport and cold trapping effects of short chain chlorinated paraffins (SCCPs). The concentrations and alpine condensation of SCCPs were investigated in lichen samples collected from the southeastern Tibetan Plateau. The concentrations of SCCPs ranged from 3098 to 6999 ng/g lipid weight (lw) and appeared to have an increasing trend with altitude. For congeners, C10 dominated among all the congener groups. The different environmental behavior for different congener groups was closely related to their octanol-air partition coefficient (Koa). C10 congeners showed an increasing trend with altitude, whereas C13 congeners were negatively correlated with altitude. Volumetric bioconcentration factors (BCF) of SCCPs reached 8.71 in lichens, which were higher than other semivolatile organic compounds (SVOCs) such as organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hexabromocyclododecane (HBCD). These results suggested that SCCPs were prone to accumulate in the lichen from the air and provided evidence for the role of lichens as a suitable atmospheric indicator in the Tibetan Plateau.
Assuntos
Hidrocarbonetos Clorados , Bifenilos Policlorados , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Parafina/análise , Bifenilos Policlorados/análise , TibetRESUMO
Low-molecular weight proteins and peptides (LMWPs, <30 kDa) in human plasma serve as potential biomarkers or drug targets and are endowed with desirable traits for biological and clinical studies. However, the identification of LMWPs from plasma is retarded by high-abundance proteins, high-molecular weight proteins, and lipids. Here, we present a sequential precipitation and delipidation (SPD) method for the efficient enrichment of LMWPs based on methyl-tert-butyl ether/methanol/water systems. The enriched LMWP sample was analyzed by single-shot liquid chromatography-tandem mass spectrometry employing both HCD and EThcD without tryptic digestion, and 725 peptides were identified on average. The LMWP sample was also digested and analyzed using a bottom-up proteomics pipeline, and 289 proteins were identified, of which 129 (44.6%) proteins were less than 30 kDa and lipoprotein-associated proteins were significantly enriched. Additionally, 25 neuropeptides and 19 long noncoding RNA-encoded polypeptides were identified. Taken together, the SPD method shows good sensitivity and reproducibility when compared with other enrichment methods and has great potential for clinical biomarker discovery and application.
Assuntos
Preparações Farmacêuticas , Proteômica , Humanos , Peso Molecular , Peptídeos , Reprodutibilidade dos TestesRESUMO
Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A ß-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.
Assuntos
Colistina , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Mutação , ProteômicaRESUMO
Phosphoinositides (PIPs) are one kind of membrane components functioning in many intracellular processes, especially in signaling transduction and membrane transport. Phosphatidylinositide phosphatases (PIPases) are specifically important for the PIP homeostasis in cell. In our previous study, we have identified the actin-related protein CaSac1 in Candida albicans, while its functional mechanisms in regulating membrane homeostasis has not been identified. Here, we show that the PIPase CaSac1 is a main membrane-related protein and regulates hyphal polarization by governing phosphoinositide dynamic and plasma membrane (PM) electrostatic field. Deletion of CaSAC1 resulted in large-scale abnormal redistribution of phosphatidylinositide 4-phosphate (PI4P) from the endomembrane to the PM. This abnormality further led to disturbance of the PM's negative electrostatic field and abnormally spotted distribution of phosphatidylinositide 4,5-bisphosphate (PI(4,5)P2). These changes led to a severe defect in polarized hyphal growth, which could be diminished with recovery of the PM's negative electrostatic field by the anionic polymer polyacrylic acid (PAA). This study revealed that the PIPase CaSac1 plays an essential role in regulating membrane homeostasis and membrane traffic, contributing to establishment of polarized hyphal growth.
Assuntos
Candida albicans/enzimologia , Candida albicans/crescimento & desenvolvimento , Homeostase , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Candida albicans/genética , Membrana Celular , Hifas/crescimento & desenvolvimento , Proteínas de Membrana/genética , Monoéster Fosfórico Hidrolases/genéticaRESUMO
The vacuolar-type H+-ATPase (V-ATPase) is a highly conserved protein complex among the eukaryotic cells. We previously revealed that both the V-ATPase and the transient receptor potential (TRP) channel Yvc1 are involved in oxidative stress response (OSR). However, the relationship between V-ATPase and Yvc1 during OSR remains unknown. In this study, disruption of the V-ATPase-encoding genes VPH2 and TFP1, similar with disruption of YVC1, caused H2O2 hypersensitivity and enhancement of vacuolar membrane permeability (VMP) under oxidative stress. Further investigations showed that unlike the wild type strain with vacuole membrane-localized Yvc1, both vph2Δ/Δ and tfp1Δ/Δ had Yvc1 localization in the vacuole cavity, indicating that disruption of VPH2 or TFP1 impaired normal vacuolar membrane-localization of Yvc1. Interestingly, addition of CaCl2 alleviated the growth defect of vph2Δ/Δ and tfp1Δ/Δ under oxidative stress, leading to prevention of VMP, decrease in ROS levels and activation of OSR. In contrast, addition of the Ca2+ chelating agent glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) aggravated H2O2 hypersensitivity of the mutants. These results showed that the V-ATPase plays an important role in maintenance of normal Yvc1 localization, which contributes to Ca2+ transport from the vacuoles to the cytosol for activation of OSR. This work sheds a novel light on the interaction between V-ATPase and Ca2+ transport for regulation of OSR in C. albicans.
Assuntos
Candida albicans , Proteínas Fúngicas , Estresse Oxidativo , Canais de Cátion TRPC , ATPases Vacuolares Próton-Translocadoras , Cálcio/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/toxicidade , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismoRESUMO
Inositol polyphosphates (IPs) is an important family of signaling molecules that regulate multiple cellular processes, such as chromatin remodeling, transcription and mRNA export. Inositol polyphosphate kinases, as the critical enzymes for production and transformation of IPs, directly determine the intracellular levels of IPs and therefore are involved in many cellular processes. However, its roles in Candida albicans, the leading fungal pathogen in human beings, remain to be investigated. In this study, we identified the inositol polyphosphate kinase Ipk1 in C. albicans and found that it localizes in the nucleus. Moreover, in the ipk1Δ/Δ mutant, the activity of mitochondrial respiratory chain complexes and the mitochondrial function was severely impaired, which were associated with down-regulation of mitochondrial function-related genes revealed by transcription profiling analysis. The ipk1Δ/Δ mutant also displayed hypersensitivity to a series of environmental stresses, such as antifungal drugs, oxidants, cell wall perturbing agents and macrophage attacks, followed by attenuation of virulence in a mouse systematic infection model. These findings firstly reported the importance of inositol polyphosphate kinase Ipk1 in C. albicans, especially its role in mitochondrial function maintenance and pathogenicity.
Assuntos
Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Animais , Candida albicans/genética , Proteínas Fúngicas/genética , Deleção de Genes , Inositol/metabolismo , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polifosfatos/metabolismo , Células RAW 264.7 , VirulênciaRESUMO
Plants can play important roles in overcoming selenium (Se) deficiency and Se toxicity in various regions of the world. Selenite (SeIV), selenate (SeVI), as well as Se nanoparticles (SeNPs) naturally formed through reduction of SeIV, are the three main Se species in the environment. The bioaccumulation and transformation of these Se species in plants still need more understanding. The aims of this study are to investigate the phytotoxicity, accumulation, and transformation of SeIV, SeVI and SeNPs in garlic, a relatively Se accumulative plant. The spatial distribution of Se in the roots were imaged using synchrotron radiation micro-focused X-ray fluorescence (SR-µXRF). The chemical forms of Se in different plant tissues were analyzed using synchrotron radiation X-ray absorption spectroscopy (SR-XAS). The results demonstrate that 1) SeNPs which has the lowest phytotoxicity is stable in water, but prone to be converted to organic Se species, such as C-Se-C (MeSeCys) upon uptake by root. 2) SeIV is prone to concentrate in the root and incorporated into C-Se-C (MeSeCys) and C-Se-R (SeCys) bonding forms; 3) SeVI with the lowest transformation probability to organic Se species has the highest phytotoxicity to plant, and is much easier to translocate from root to leaf than SeNPs and SeIV. The present work provides insights into potential impact of SeNPs, selenite and selenate on aquatic-plant ecosystems, and is beneficial for systematically understanding the Se accumulation and transformation in food chain.
Assuntos
Alho/metabolismo , Nanopartículas/metabolismo , Ácido Selênico/farmacocinética , Ácido Selenioso/farmacocinética , Selênio/farmacocinética , Selenito de Sódio/farmacocinética , Bioacumulação , Transporte Biológico , Biotransformação , Alho/efeitos dos fármacos , Hidroponia , Nanopartículas/toxicidade , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Selênio/toxicidade , Selenito de Sódio/toxicidade , Espectroscopia por Absorção de Raios XRESUMO
Candida albicans is an important opportunistic fungal pathogen, and hyphal polarized growth is critical for its invasive infection to the host. Both the vacuolar transient receptor potential (TRP) Ca2+ channel Yvc1 and the NADPH oxidase Fre8-governed reactive oxygen species (ROS) gradient are involved in hyphal development, but the relationship between Yvc1 and Fre8 during hyphal polarized growth remains to be investigated. Herein, we found that deletion of YVC1 led to dispersed distribution of ROS along the germ tube, while it was concentrated at the hyphal tip in WT cells. Moreover, Fre8 localization was altered as YVC1 was disrupted. Besides, similar to deletion of YVC1, addition of the Ca2+ chelating agent EGTA caused depolarization of Fre8-GFP in the wild-type cells, indicating the critical role of Yvc1-maintained Ca2+ gradient in polarized distribution of Fre8-GFP and consequent disruption of tip ROS gradient. By constructing a series of GFP-tagged polarized growth-related proteins, including Bud6, Exo70 and Lifeact, we found that these proteins, similar to Fre8 and ROS, had depolarized localization in yvc1Δ/Δ. Thus, our work provides a mechanic explanation of Yvc1-governed and ROS-related hyphal polarized growth, and shed a novel light on the role of Ca2+ signaling in maintenance of redox homeostasis and morphogenesis in the fungal pathogens.
Assuntos
Canais de Cálcio/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cálcio/genética , Candida albicans/enzimologia , Polaridade Celular , Deleção de Genes , Hifas/crescimento & desenvolvimento , NADPH Oxidases/metabolismo , Canais de Potencial de Receptor Transitório/genéticaRESUMO
Occupational workers are usually exposed to high levels of per- and polyfluoroalkyl substances (PFASs), placing them under greater health risks compared to the general population. Herein, 40 occupational workers from a factory in China and 52 control subjects from the general population were involved in an investigation on the potential health concerns of occupational exposure to PFASs by mass spectrometry-based metabolomics analysis. The PFAS levels in plasma from both groups were analyzed. Six PFAS congeners (∑6PFASs) were found to be the main components of the 13 detected PFASs, with a geometric mean of 1770 and 22.2 ng mL-1 in occupational workers and the general population, respectively. Metabolic profiles of the plasma samples were acquired using liquid chromatography coupled with orbitrap high-resolution mass spectrometry and gas chromatography-mass spectrometry. The partial least-squares-discriminant analysis model indicated that the plasma metabolic profiles of the two groups could be clearly separated. Differential and correlation analyses were applied to discover potential biomarkers. A total of 14 potential biomarkers were identified, and they were found to be associated with oxidative stress, fatty acid ß-oxidation disorder, and kidney injury. The obtained results indicated that the health effects of occupational exposure to PFASs on workers should not be ignored.
Assuntos
Fluorocarbonos , Exposição Ocupacional , China , Ácidos Graxos , Humanos , Espectrometria de Massas , Metabolômica , Estresse OxidativoRESUMO
Co3O4 nanoparticles (NPs) are one kind of the important nanomaterials that have the application potential in catalyst, electrochromic devices, sensors, etc. However, their biological effect remains to be detailed. In this study, we investigated the effect of the as-synthesized Co3O4 NPs (15-30â¯nm) on the growth of mammalian cells, and found that the NPs severely inhibited cell growth at the sublethal concentrations from 12.5 to 200â¯mg/L. Interestingly, the NPs did not cause obvious cell death and ROS accumulation, indicating that their inhibitory effect was not attributed to both apoptosis- or necrosis-related cell death and ROS accumulation. Transcription profiling analysis revealed that the NPs caused remarkable down regulation of the genes involved in mitochondrial functions. Transmission electron microscopy (TEM) and biochemical analysis further showed that the NPs might interact with the mitochondria, impairing the mitochondrial membrane potential (MMP) and ATP production. This study uncovers a mitochondrial respiratory chain-related and ROS-independent toxicity mechanism of Co3O4 NPs in eukaryotic cells.
Assuntos
Trifosfato de Adenosina/biossíntese , Proliferação de Células/efeitos dos fármacos , Cobalto/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas/toxicidade , Óxidos/farmacologia , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Mamíferos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/fisiologia , Nanopartículas/químicaRESUMO
Phospholipids (PLs), one of the lipid categories, are not only the primary building blocks of cellular membranes, but also can be split to produce products that function as second messengers in signal transduction and play a pivotal role in numerous cellular processes, including cell growth, survival, and motility. Here, we present an integrated novel method that combines a fast and robust TMS-diazomethane-based phosphate derivatization and isotopic labeling strategy, which enables simultaneous profiling and relative quantification of PLs from biological samples. Our results showed that phosphate methylation allows fast and sensitive identification of the six major PL classes, including their lysophospholipid counterparts, under positive ionization mode. The isotopic labeling of endogenous PLs was achieved by deuterated diazomethane, which was generated through acid-catalyzed hydrogen/deuterium (H/D) exchange and methanolysis of TMS-diazomethane during the process of phosphate derivatization. The measured H/D ratios of unlabeled and labeled PLs, which were mixed in known proportions, indicated that the isotopic labeling strategy is capable of providing relative quantitation with adequate accuracy, reproducibility, and a coefficient of variation of 9.1%, on average. This novel method offers unique advantages over existing approaches and presents a powerful tool for research of PL metabolism and signaling.
Assuntos
Lisofosfolipídeos/metabolismo , Metabolômica/métodos , Fosfolipídeos/metabolismo , Linhagem Celular Tumoral , Diazometano/metabolismo , Humanos , Marcação por Isótopo , Metilação , Fosfolipídeos/química , Fatores de TempoRESUMO
One of the major challenges in prostate cancer therapy remains the development of effective treatments for castration-resistant prostate cancer (CRPC), as the underlying mechanisms for its progression remain elusive. Previous studies showed that androgen receptor (AR) is crucially involved in regulation of metabolism in prostate cancer (PCa) cells throughout the transition from early stage, androgen-sensitive PCa to androgen-independent CRPC. AR achieves such metabolic rewiring directively either via its transcriptional activity or via interactions with AMP-activated protein kinase (AMPK). However, due to the heterogeneous expression and activity status of AR in PCa cells, it remains a challenge to investigate the links between AR status and metabolic alterations. To this end, we compared the proteomes of three pairs of androgen-sensitive (AS) and androgen-independent (AI) PCa cell lines, namely, PC3-AR(+)/PC3, 22Rv1/Du145, and LNCaP/C42B, using an iTRAQ labeling approach. Our results revealed that most of the differentially expressed proteins between each pair function in metabolism, indicating a metabolic shift between AS and AI cells, as further validated by multiple reaction monitoring (MRM)-based quantification of nucleotides and relative comparison of fatty acids between these cell lines. Furthermore, increased adenylate kinase isoenzyme 1 (AK1) in AS relative to AI cells may result in activation of AMPK, representing a major regulatory factor involved in the observed metabolic shift in PCa cells.