Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2122805119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733260

RESUMO

During viral infection, sensing of viral RNA by retinoic acid-inducible gene-I-like receptors (RLRs) initiates an antiviral innate immune response, which is mediated by the mitochondrial adaptor protein VISA (virus-induced signal adaptor; also known as mitochondrial antiviral signaling protein [MAVS]). VISA is regulated by various posttranslational modifications (PTMs), such as polyubiquitination, phosphorylation, O-linked ß-d-N-acetylglucosaminylation (O-GlcNAcylation), and monomethylation. However, whether other forms of PTMs regulate VISA-mediated innate immune signaling remains elusive. Here, we report that Poly(ADP-ribosyl)ation (PARylation) is a PTM of VISA, which attenuates innate immune response to RNA viruses. Using a biochemical purification approach, we identified tankyrase 1 (TNKS1) as a VISA-associated protein. Viral infection led to the induction of TNKS1 and its homolog TNKS2, which translocated from cytosol to mitochondria and interacted with VISA. TNKS1 and TNKS2 catalyze the PARylation of VISA at Glu137 residue, thereby priming it for K48-linked polyubiquitination by the E3 ligase Ring figure protein 146 (RNF146) and subsequent degradation. Consistently, TNKS1, TNKS2, or RNF146 deficiency increased the RNA virus-triggered induction of downstream effector genes and impaired the replication of the virus. Moreover, TNKS1- or TNKS2-deficient mice produced higher levels of type I interferons (IFNs) and proinflammatory cytokines after virus infection and markedly reduced virus loads in the brains and lungs. Together, our findings uncover an essential role of PARylation of VISA in virus-triggered innate immune signaling, which represents a mechanism to avoid excessive harmful immune response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Infecções por Vírus de RNA , Vírus de RNA , Tanquirases , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células HEK293 , Humanos , Imunidade Inata/genética , Camundongos , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Tanquirases/genética , Tanquirases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Zool Res ; 42(6): 692-709, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34581030

RESUMO

The Chinese tree shrew (Tupaia belangeri chinensis) is emerging as an important experimental animal in multiple fields of biomedical research. Comprehensive reference genome annotation for both mRNA and long non-coding RNA (lncRNA) is crucial for developing animal models using this species. In the current study, we collected a total of 234 high-quality RNA sequencing (RNA-seq) datasets and two long-read isoform sequencing (ISO-seq) datasets and improved the annotation of our previously assembled high-quality chromosome-level tree shrew genome. We obtained a total of 3 514 newly annotated coding genes and 50 576 lncRNA genes. We also characterized the tissue-specific expression patterns and alternative splicing patterns of mRNAs and lncRNAs and mapped the orthologous relationships among 11 mammalian species using the current annotated genome. We identified 144 tree shrew-specific gene families, including interleukin 6 (IL6) and STT3 oligosaccharyltransferase complex catalytic subunit B (STT3B), which underwent significant changes in size. Comparison of the overall expression patterns in tissues and pathways across four species (human, rhesus monkey, tree shrew, and mouse) indicated that tree shrews are more similar to primates than to mice at the tissue-transcriptome level. Notably, the newly annotated purine rich element binding protein A (PURA) gene and the STT3B gene family showed dysregulation upon viral infection. The updated version of the tree shrew genome annotation (KIZ version 3: TS_3.0) is available at http://www.treeshrewdb.org and provides an essential reference for basic and biomedical studies using tree shrew animal models.


Assuntos
Genoma , Análise de Sequência de RNA/veterinária , Tupaiidae/genética , Animais , Sequência de Bases , Isoformas de Proteínas , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Especificidade da Espécie
3.
Yi Chuan ; 29(5): 559-64, 2007 May.
Artigo em Chinês | MEDLINE | ID: mdl-17548324

RESUMO

The gene family GAGE is characterized to be expressed in testis and a portion of tumors, which is considered to be a candidate for diagnostic marker and immunotherapy target. The present study revealed that GAGE gene is unique to primate lineage. At least 15 duplicates with low divergence were found to be clustered in human X chromosome, while chimpanzee and macaque has 3 and 4 in a similar manner. The phylogenetic tree for the duplicates was constructed and the age of the duplication events was estimated, which was ranged from 4 million years ago to present. The Ka/Ks value of the duplicates was significantly greater than 1, indicating that GAGE family is under positive selection. Based on this study, GAGE may contribute to the characteristics of primate species, and the role of GAGE gene in evolution and in the genesis of gametid and tumor deserves further investigation.


Assuntos
Antígenos de Neoplasias/genética , Evolução Molecular , Família Multigênica/genética , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/química , Sequência de Bases , Biologia Computacional , Duplicação Gênica , Humanos , Macaca mulatta/genética , Dados de Sequência Molecular , Neoplasias/genética , Pan troglodytes/genética , Filogenia , Seleção Genética , Cromossomo X/genética
4.
Nat Commun ; 8: 15534, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534493

RESUMO

STING (also known as MITA) is critical for host defence against viruses and the activity of STING is regulated by ubiquitination. However, the deubiquitination of STING is not fully understood. Here, we show that ubiquitin-specific protease 13 (USP13) is a STING-interacting protein that catalyses deubiquitination of STING. Knockdown or knockout of USP13 potentiates activation of IRF3 and NF-κB and expression of downstream genes after HSV-1 infection or transfection of DNA ligands. USP13 deficiency results in impaired replication of HSV-1. Consistently, USP13 deficient mice are more resistant than wild-type littermates to lethal HSV-1 infection. Mechanistically, USP13 deconjugates polyubiquitin chains from STING and prevents the recruitment of TBK1 to the signalling complex, thereby negatively regulating cellular antiviral responses. Our study thus uncovers a function of USP13 in innate antiviral immunity and provides insight into the regulation of innate immunity.


Assuntos
Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/fisiologia , Proteínas de Membrana/imunologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Humanos , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Poliubiquitina/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Ubiquitinação/imunologia , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA