Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Reprod Immunol ; 164: 104260, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38761507

RESUMO

INTRODUCTION: Recent studies have suggested the involvement of ferroptosis in preterm birth. Despite compelling evidence, the underlying mechanism remains unknown. This investigation aimed to determine the therapeutic effects of Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, in preterm birth and fetal brain injury. METHODS: Human placenta samples and clinical data of participants were collected to ascertain whether placental ferroptosis was associated with preterm birth. Lipopolysaccharide (LPS)-induced preterm birth mouse model was used to examine the protective effects of Fer-1 on preterm birth. Fetal brain tissues and offspring mice at 5 and 8 weeks were studied to determine the effects of Fer-1 on the cognitive function of offspring. RESULTS: We examined the mechanism of spontaneous preterm birth and discovered that placental ferroptosis was associated with preterm birth. Fer-1 inhibited preterm birth by ameliorating placental ferroptosis and maternal inflammation, thus improving LPS-induced intrauterine inflammation to maintain pregnancy. Antenatal administration of Fer-1 prevented LPS-induced fetal brain damage in the acute phase and improved long-term neurodevelopmental impairments by improving placental neuroendocrine signaling and maintaining placental function. CONCLUSION: Fer-1 inhibited preterm birth and fetal brain injury by inhibiting maternal inflammation and improving placental function. Our findings provide a novel therapeutic strategy for preterm birth.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38573008

RESUMO

Aims: Preterm birth (PTB), recognized as delivery before 37 weeks of gestation, is a multifactorial syndrome characterizing as the main cause of neonatal mortality. Reactive oxygen species (ROS) have been identified as proinflammatory factors to cause placental inflammation, thereby resulting in several pregnancy outcomes. To date, limited knowledge regarding the underlying mechanisms of ROS-induced PTB has been reported. In this study, we aimed to investigate the role of oxidative stress in PTB and the protective effects of mitochondria-targeted antioxidant MitoTEMPO (MT) on preterm labor and offspring mice. Results: In this study, we found that preterm placentas had abnormal mitochondrial function, oxidative stress, and inflammatory response. In the lipopolysaccharide (LPS)-induced PTB mouse model, MT inhibited PTB by ameliorating maternal oxidative stress and inflammation, especially in placentas, thus improving placental function to maintain pregnancy. Antenatal administration of MT prevented LPS-induced fetal brain damage in acute phase and improved long-term neurodevelopmental impairments. Furthermore, our in vitro investigations validated that MT retarded the ROS accumulation and inflammatory response in LPS-stimulated trophoblast cells by promoting Kelch-like ECH-associated protein 1 (Keap1) degradation and subsequently activating nuclear factor erythroid 2-related factor 2 (Nrf2). By inhibiting Nrf2 activation, we discovered that the anti-inflammation and protective characteristics of MT were Nrf2/ARE pathway dependent. Innovation and Conclusion: MT inhibited PTB and fetal brain injury by inhibiting maternal inflammation and improving placental function through Keap1/Nrf2/antioxidant response element signaling pathway. Our findings provide a novel therapeutic strategy for PTB.

3.
Front Pharmacol ; 12: 696697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393780

RESUMO

Parturition involves the transformation of the quiescent myometrium into a highly excitable and contractile state, a process that is driven by changes in myometrial gene expression. This study aimed to identify myometrial transcriptomic signatures and potential novel hub genes in parturition, which have great significance for understanding the underlying mechanisms of successful parturition and treating labor-associated pathologies such as preterm birth. In our study, comparative transcriptome analysis was carried out on human myometrial tissues collected from women undergoing caesarean section at term in the presence (TL = 8) and absence of labor (TNL = 8). A total of 582 differentially expressed genes (DEGs) between TL and TNL tissues were identified. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA) revealed that the DEGs were enriched in signal transduction, regulation of signaling receptor activity, inflammatory response, cytokine-cytokine receptor interaction, IL-17 signaling pathway, TNF signaling pathway, among others. Thus, transcriptome analysis of the myometrium during term labor revealed that labor onset was associated with an inflammatory response. Moreover, protein-protein interactions network analysis identified FPR1, CXCL8, CXCL1, BDKRB2, BDKRB1, and CXCL2 as the hub genes associated with onset of labor. Formyl peptide receptor 1 (FPR1) was highly expressed in laboring myometrial tissues, with the activation of FPR1 in vitro experiments resulting in increased myometrial contraction. Our findings demonstrate the novel role of FPR1 as a modulator of myometrial contraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA