Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(6): 2786-2797, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311839

RESUMO

Understanding the underlying mechanisms of soil microbial nitrogen (N) utilization under land use change is critical to evaluating soil N availability or limitation and its environmental consequences. A combination of soil gross N production and ecoenzymatic stoichiometry provides a promising avenue for nutrient limitation assessment in soil microbial metabolism. Gross N production via 15N tracing and ecoenzymatic stoichiometry through the vector and threshold element ratio (Vector-TER) model were quantified to evaluate the soil microbial N limitation in response to land use changes. We used tropical soil samples from a natural forest ecosystem and three managed ecosystems (paddy, rubber, and eucalyptus sites). Soil extracellular enzyme activities were significantly lower in managed ecosystems than in a natural forest. The Vector-TER model results indicated microbial carbon (C) and N limitations in the natural forest soil, and land use change from the natural forest to managed ecosystems increased the soil microbial N limitation. The soil microbial N limitation was positively related to gross N mineralization (GNM) and nitrification (GN) rates. The decrease in microbial biomass C and N as well as hydrolyzable ammonium N in managed ecosystems led to the decrease in N-acquiring enzymes, inhibiting GNM and GN rates and ultimately increasing the microbial N limitation. Soil GNM was also positively correlated with leucine aminopeptidase and ß-N-acetylglucosaminidase. The results highlight that converting tropical natural forests to managed ecosystems can increase the soil microbial N limitation through reducing the soil microbial biomass and gross N production.


Assuntos
Ecossistema , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Microbiologia do Solo , Florestas , Carbono , Fósforo/metabolismo
2.
Glob Chang Biol ; 29(24): 7117-7130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800353

RESUMO

Replacing synthetic fertilizer by organic manure has been shown to reduce emissions of nitrous oxide (N2 O), but the specific roles of ammonia oxidizing microorganisms and gross nitrogen (N) transformation in regulating N2 O remain unclear. Here, we examined the effect of completely replacing chemical fertilizer with organic manure on N2 O emissions, ammonia oxidizers, gross N transformation rates using a 13-year field manipulation experiment. Our results showed that organic manure reduced cumulative N2 O emissions by 16.3%-210.3% compared to chemical fertilizer. The abundance of ammonia oxidizing bacteria (AOB) was significantly lower in organic manure compared with chemical fertilizer during three growth stages of maize. Organic manure also significantly decreased AOB alpha diversity and changed their community structure. However, organic manure substitution increased the abundance of ammonia oxidizing archaea and the alpha diversity of comammox Nitrospira compared to chemical fertilizer. Interestingly, organic manure decreased organic N mineralization by 23.2%-32.9%, and autotrophic nitrification rate by 10.5%-45.4%, when compared with chemical fertilizer. This study also found a positive correlation between AOB abundance, organic N mineralization and gross autotrophic nitrification rate with N2 O emission, and their contribution to N2 O emission was supported by random forest analysis. Our study highlights the key roles of ammonia oxidizers and N transformation rates in predicting cropland N2 O.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Amônia/análise , Esterco , Nitrogênio/análise , Microbiologia do Solo , Oxirredução , Archaea , Nitrificação
3.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158888

RESUMO

Under anoxic conditions, many bacteria, including Shewanella loihica strain PV-4, could use nitrate as an electron acceptor for dissimilatory nitrate reduction to ammonium (DNRA) and/or denitrification. Previous and current studies have shown that DNRA is favored under higher ambient carbon-to-nitrogen (C/N) ratios, whereas denitrification is upregulated under lower C/N ratios, which is consistent with our bioenergetics calculations. Interestingly, computational analyses indicate that the common cyclic AMP receptor protein (designated CRP1) and its paralogue CRP2 might both be involved in the regulation of two competing dissimilatory nitrate reduction pathways, DNRA and denitrification, in S. loihica PV-4 and several other denitrifying Shewanella species. To explore the regulatory mechanism underlying the dissimilatory nitrate reduction (DNR) pathways, nitrate reduction of a series of in-frame deletion mutants was analyzed under different C/N ratios. Deletion of crp1 could accelerate the reduction of nitrite to NO under both low and high C/N ratios. CRP1 is not required for denitrification and actually suppresses production of NO and N2O gases. Deletion of either of the NO-forming nitrite reductase genes nirK or crp2 blocked production of NO gas. Furthermore, real-time PCR and electrophoretic mobility shift assays (EMSAs) demonstrated that the transcription levels of DNRA-relevant genes such as nap-ß (napDABGH), nrfA, and cymA were upregulated by CRP1, while nirK transcription was dependent on CRP2. There are tradeoffs between the different physiological roles of nitrate/lactate, as nitrogen nutrient/carbon source and electron acceptor/donor and CRPs may leverage dissimilatory nitrate reduction pathways for maximizing energy yield and bacterial survival under ambient environmental conditions.IMPORTANCE Some microbes utilize different dissimilatory nitrate reduction (DNR) pathways, including DNR to ammonia (DNRA) and denitrification pathways, for anaerobic respiration in response to ambient carbon/nitrogen ratio changes. Large-scale industrial nitrogen fixation and fertilizer application raise the concern of emission of N2O, a stable gas with potent global warming potential, as consequence of microbial respiration, thereby aggravating global warming and climate change. However, little is known about the molecular mechanism underlying the choice of two competing DNR pathways. We demonstrate that the global regulator CRP1, which is widely encoded in bacteria, is required for DNRA in S. loihica PV-4 strain, while the CRP2 paralogue is required for transcription of the nitrite reductase gene nirK for denitrification. Sufficient carbon source lead to the predominance of DNRA, while carbon source/electron donor deficiency may result in an incomplete denitrification process, raising the concern of high levels of N2O emission from nitrate-rich and carbon source-poor waters and soils.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Compostos de Nitrogênio/metabolismo , Shewanella/metabolismo , Proteínas de Bactérias/genética , Proteína Receptora de AMP Cíclico/genética , Desnitrificação , Elétrons
4.
J Environ Sci (China) ; 36: 112-20, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26456613

RESUMO

Reductive soil disinfestation (RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils. However, there is little information available about sulfate (SO4(2-)) transformation and sulfur (S) gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO4(2-) transformation and S gas emissions, two SO4(2-)-accumulated vegetable soils (denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO4(2-) by 51% and 61% in S1 and S2, respectively. The disappeared SO4(2-) was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) were detected, but the total S gas emission accounted for <0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO4(2-) into undissolved form, reduced soil SO4(2-) by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO4(2-), liming stimulates the conversion of dissolved SO4(2-) into undissolved form, probably due to the precipitation with calcium.


Assuntos
Compostos de Cálcio/farmacologia , Desinfetantes/farmacologia , Óxidos/farmacologia , Solo/química , Sulfatos/metabolismo , Compostos de Enxofre/metabolismo , Compostos de Cálcio/administração & dosagem , Desinfetantes/administração & dosagem , Desinfecção , Inundações , Gases/metabolismo , Medicago sativa/crescimento & desenvolvimento , Óxidos/administração & dosagem
5.
J Environ Sci (China) ; 34: 10-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26257341

RESUMO

A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a (15)N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil pH along with increasing orchard age significantly. The amoA gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity (defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis-Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3(-) consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3(-) loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age.


Assuntos
Fertilizantes/análise , Nitrificação , Nitrogênio/metabolismo , Solo/química , Agricultura , China , Citrus/crescimento & desenvolvimento , Meio Ambiente , Monitoramento Ambiental , Florestas , Isótopos de Nitrogênio/análise
6.
J Environ Sci (China) ; 31: 30-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968255

RESUMO

Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense (FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated (100% water holding capacity) conditions at 30°C for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential (down to -350 mV) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore, incorporating soil with straw (rice or maize straw) at a rate of 3.0 tons/ha under 100% water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30°C.


Assuntos
Fusarium/efeitos dos fármacos , Musa/microbiologia , Doenças das Plantas/prevenção & controle , Actinomyces , Antibiose , Resíduos Industriais , Oryza , Doenças das Plantas/microbiologia , Caules de Planta , Microbiologia do Solo , Água , Zea mays
7.
Environ Int ; 184: 108491, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340405

RESUMO

Copper (Cu) is a key cofactor in ammonia monooxygenase functioning responsible for the first step of nitrification, but its excess availability impairs soil microbial functions and plant growth. Yet, the impact of Cu on nitrogen (N) cycling and process-related variables in cropland soils remains unexplored globally. Through a meta-analysis of 1209-paired and 319-single observations from 94 publications, we found that Cu (Cu addition or Cu-polluted soil) reduced soil potential nitrification by 33.8% and nitrite content by 73.5% due to reduced soil enzyme activities of nitrification and urease, microbial biomass content, and ammonia oxidizing archaea abundance. The response ratio of potential nitrification decreased with increasing Cu concentration, soil total N, and clay content. We further noted that soil potential nitrification inhibited by 46.5% only when Cu concentration was higher than 150 mg kg-1, while low Cu concentration (less than 150 mg kg-1) stimulated soil nitrate by 99.0%. Increasing initial soil Cu content stimulated gross N mineralization rate due to increased soil organic carbon and total N, but inhibited gross nitrification rate, which ultimately stimulated gross N immobilization rate as a result of increased the residence time of ammonium. This resulted in a lower ratio of gross nitrification rate to gross N immobilization rate, implying a lower potential risk of N loss as evidenced by decreased nitrous oxide emissions with increasing initial soil Cu content. Our analysis offers initial global evidence that Cu has an important role in controlling soil N availability and loss through its effect on N production and consumption.


Assuntos
Cobre , Solo , Carbono , Produtos Agrícolas , Nitrogênio , Oxirredução , Microbiologia do Solo
8.
Environ Pollut ; 335: 122370, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586684

RESUMO

Converting natural forests to managed ecosystems generally increases soil nitrous oxide (N2O) emission. However, the pattern and underlying mechanisms of N2O emissions after converting tropical forests to managed plantations remain elusive. Hence, a laboratory incubation study was investigated to determine soil N2O emissions of four land uses including forest, eucalyptus, rubber, and paddy field plantations in a tropical region of China. The effect of soil carbon (C) and nitrogen (N) fractions on soil N2O emissions and related functional genes was also estimated. We found that the conversion of natural forests to managed forests significantly decreased soil N2O emissions, but the conversion to paddy field had no effect. Soil N2O emissions were controlled by both nitrifying and denitrifying genes in tropical natural forest, but only by nitrifying genes in managed forests and by denitrifying genes in paddy field. Soil total N, extractable nitrate, particulate organic C (POC), and hydrolyzable ammonium N showed positive relationship with soil N2O emission. The easily oxidizable organic C (EOC), POC, and light fraction organic C (LFOC) had positive linear correlation with the abundance of AOA-amoA, AOB-amoA, nirK, and nirS genes. The ratios of dissolved organic C, EOC, POC, and LFOC to total N rather than soil C/N ratio control soil N2O emissions with a quadratic function relationship, and the local maximum values were 0.16, 0.22, 1.5, and 0.55, respectively. Our results provided a new evidence of the role of soil C and N fractions and their ratios in controlling soil N2O emissions and nitrifying and denitrifying genes in tropical soils.


Assuntos
Carbono , Solo , Nitrogênio , Ecossistema , Microbiologia do Solo , Óxido Nitroso/análise
9.
Nat Food ; 4(1): 109-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118576

RESUMO

The internal soil nitrogen (N) cycle supplies N to plants and microorganisms but may induce N pollution in the environment. Understanding the variability of gross N cycling rates resulting from the global spatial heterogeneity of climatic and edaphic variables is essential for estimating the potential risk of N loss. Here we compiled 4,032 observations from 398 published 15N pool dilution and tracing studies to analyse the interactions between soil internal potential N cycling and environmental effects. We observed that the global potential N cycle changes from a conservative cycle in forests to a less conservative one in grasslands and a leaky one in croplands. Structural equation modelling revealed that soil properties (soil pH, total N and carbon-to-N ratio) were more important than the climate factors in shaping the internal potential N cycle, but different patterns in the potential N cycle of terrestrial ecosystems across climatic zones were also determined. The high spatial variations in the global soil potential N cycle suggest that shifting cropland systems towards agroforestry systems can be a solution to improve N conservation.


Assuntos
Ecossistema , Nitratos , Ciclo do Nitrogênio , Solo/química , Compostos Orgânicos , Produtos Agrícolas
10.
Environ Res ; 111(5): 643-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21550605

RESUMO

To date, N(2)O production pathways are poorly understood in the humid subtropical and tropical forest soils. A (15)N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N(2)O production in four subtropical acid forest soils (pH<4.5) in China. The results showed that denitrification was the main source of N(2)O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N(2)O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N(2)O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N(2)O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N(2)O product ratios from nitrification. The ratio of N(2)O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget.


Assuntos
Ciclo do Nitrogênio , Dióxido de Nitrogênio/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Árvores , China , Concentração de Íons de Hidrogênio , Dióxido de Nitrogênio/análise , Microbiologia do Solo , Poluentes do Solo/análise
11.
Sci Total Environ ; 737: 140266, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783855

RESUMO

A 15N-tracer incubation experiment was conducted to investigate the short-term effects of biochar on gross N transformation rates and nitrous oxide (N2O) emissions in soils under 1-year and 10-year vegetable cultivations. Biochar was applied at three rates: 0 (control), 10, and 30 t ha-1. Gross N transformation rates in the two vegetable soils varied in response to biochar application. Specifically, organic N oxidation into NO3- (ONorg) was almost negligible in the biochar-amended soils, and biochar application at 10 t ha-1 did not change either the rate of mineralization of organic N into NH4+ (MNorg) nor the inorganic N supply capacity (INS, ONorg + MNorg) in both soils, when compared to the control. However, 30 t ha-1 biochar decreased INS significantly, by inhibiting MNorg, in the 1-year vegetable soil but increased INS, by stimulating MNorg, in the 10-year vegetable soil. The rates of NH4+ oxidation into NO3- (ONH4), NO3- immobilization into organic N, and dissimilatory NO3- reduction into NH4+ were not influenced significantly by biochar application in the 1-year vegetable soil, resulting in no significant differences in NO3- production potential. Conversely, biochar decreased NO3- production potential significantly in the 10-year vegetable soil, by inhibiting ONH4 and increasing NH4+ immobilization into organic N (INH4), with more obvious effects under higher biochar application rates. Overall, the results demonstrate the capacity of biochar to stimulate NH4+ turnover and to decrease NO3- production potential in soil under long-term vegetable cultivation; however, the effect is limited under short-term vegetable cultivation. In addition, N2O emissions decreased significantly in biochar-amended vegetable soils.


Assuntos
Solo , Verduras , Carvão Vegetal , Óxido Nitroso/análise
12.
Ying Yong Sheng Tai Xue Bao ; 31(12): 4109-4116, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33393248

RESUMO

Straw returning is one of the important measures for improving soil fertility. It is unclear, however, whether the regulation function of soil on nitrogen (N) cycle after fertilization is sustainable and the relationship between the regulation function and the amount of straw returned to the field. In this study, a 3-year straw returning field trial was set up in a field had been carried out straw returning of all the havested straw for nine years. The amount of straw returned was 100%, 67%, 33% and 0 of the average annual straw yield (7500 kg·hm-2) to identify the effects of different straw returned amount on N transformation in the fertilized soil (0-10 cm). Results showed that the amount of straw returning affected the production and consumption of NH4+-N and NO3--N by affecting the potential gross N transformation rate. When the amount of straw returning was less than 67%, the production rate of NH4+-N significantly reduced and the consumption rate significantly increased, and thus led to the decrease in soil NH4+-N retention capacity. The NO3--N production rate increased and the retention capacity decreased, and the NO3--N accumulation and leaching loss risk increased. Therefore, returning more than 67% of harvested straw was necessary to maintain the function of soil N conservation.


Assuntos
Fertilizantes , Nitrogênio , Agricultura , Fertilização , Nitrogênio/análise , Solo
13.
Environ Sci Pollut Res Int ; 24(32): 25431-25440, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28933021

RESUMO

The fluorescence and ultraviolet spectroscopic characteristics of dissolved organic matter extracted from sediments in an anthropogenic-impacted river (Hao River) in Southeastern China were analyzed in the current study. Excitation-emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC) was conducted to analyze the sources and composition of dissolved organic matter (DOM). The average dissolved organic carbon (DOC) concentrations of all samples at depths of 0-10, 10-20, and 20-30 cm were 317, 319, and 319 mg kg-1 dry weight, respectively. Four components were identified from the fluorescence spectra that consisted of three humic-like components (C1, C2, and C3) and one protein-like component (C4). Component C1 was derived from terrestrial plants and soils. Component C2 in the anthropogenic-impacted Hao River was derived from anthropogenic pollution such as wastewater. Component C3 comprised refractory particles derived from terrestrial plants. Component C4 was autochthonous and produced by the aquatic ecosystem. With the exception of site 4, all sites could be assigned to one of two groups. Group 1 consisted of sites 1, 2, 3, and 5, and group 2 consisted of sites 6, 7, and 8. Our result showed that the sediment in group 2 was more anaerobic than in group 1. Consequently, it could be concluded that this river was polluted by both point and non-point pollution. The terrain slopes cause that water flows from the Yangzi River into group 1. The dilution effect in group 1 resulted in less accumulation of DOM in the sediment of group 1 than group 2.


Assuntos
Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Análise Fatorial , Compostos Orgânicos/análise , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
14.
Ying Yong Sheng Tai Xue Bao ; 27(2): 484-90, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-27396121

RESUMO

In this study, we investigated the effects of two strains of probiotic bacteria (Bacillus megaterium BM and Bacillus amyloliquefaciens BA) combined with chemical fertilizers and vermicompost on the soil property, the yield and quality of tomato. The results showed that under the same nutrient level, vermicompost significantly increased the yield, soluble sugar and protein contents of fruit, the soil pH and available phosphorus when compared with chemical fertilizers. Vermicompost combined with probiotics not only increased the tomato yield, soluble sugar, protein and vitamin C contents, sugar/acid ratio of fruit, and reduced the organic acid and nitrate nitrogen contents of fruit, also increased the soil pH and nitrate nitrogen content, and reduced soil electric conductivity when compared with vermicompost treatment. This improved efficiency was better than that by chemical fertilizers combined with probiotics. For BA and BM applied with chemical fertilizers or vermicompost, both stains had no significant effect on tomato quality. When co-applied with vermicompost, BA and BM showed significant difference in tomato yield. High soil available phosphorus content was determined when BM was combined with chemical fertilizers, while high soil available potassium content was obtained when BA was combined with vermicompost. Our results suggested that probiotics and vermicompost could be used as alternatives of chemical fertilizers in tomato production and soil fertility improvement.


Assuntos
Fertilizantes , Probióticos , Solo/química , Solanum lycopersicum/crescimento & desenvolvimento , Ácidos/análise , Frutas/química , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise
15.
Chemosphere ; 151: 171-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26938679

RESUMO

Plastic film mulching has played an important role in Chinese agriculture, especially in vegetable production, but large amounts of film residues can accumulate in the soil. The present study investigated the effects of plastic film residues on the occurrence of soil PAEs and microbial activities using a batch pot experiment. PAE concentrations increased with increasing plastic film residues but the soil microbial carbon and nitrogen, enzyme activities and microbial diversity decreased significantly. At the end of the experiment the PAE concentrations were 0-2.02 mg kg(-1) in the different treatments. Soil microbial C and N, enzyme activities, AWCD value, and Shannon-Weaver and Simpson indices declined by about 28.9-76.2%, 14.9-59.0%, 4.9-22.7%, 23.0-42.0% and 1.8-18.7%, respectively. Soil microbial activity was positively correlated with soil PAE concentration, and soil PAE concentrations were impacted by plastic color and residue volume. Correlations among, and molecular mechanisms of, plastic film residues, PAE occurrence and microbial activity require further study.


Assuntos
Ácidos Ftálicos/análise , Plásticos/toxicidade , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Agricultura , Carbono/análise , Nitrogênio/análise
17.
Sci Rep ; 5: 8615, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25722059

RESUMO

Subtropical ecosystems are often characterized by high N cycling rates, but net nitrification rates are often low in subtropical acid soils. NO3(-)-N immobilization into organic N may be a contributing factor to understand the observed low net nitrification rates in these acid soils. The effects of Fe oxide and organic matter on soil N transformations were evaluated using a (15)N tracing study. Soil net nitrification was low for highly acidic yellow soil (Ferralsols), but gross ammonia oxidation was 7 times higher than net nitrification. In weakly acidic purple soil (Cambisols), net nitrification was 8 times higher than in Ferralsols. The addition of 5% Fe oxide to Cambisols, reduced the net nitrification rate to a negative rate, while NO3(-)-N immobilization rate increased 8 fold. NO3(-)-N immobilization was also observed in Ferralsols which contained high Fe oxides levels. A possible mechanism for these reactions could be stimulation of NO3(-)-N immobilization by Fe oxide which promoted the abiotic formation of nitrogenous polymers, suggesting that the absence of net nitrification in some highly acid soils may be due to high rates of NO3(-)-N immobilization caused by high Fe oxide content rather than a low pH.

18.
Ying Yong Sheng Tai Xue Bao ; 24(9): 2619-24, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24417122

RESUMO

High application rate of chemical fertilizers and unreasonable rotation in facility vegetable cultivation can easily induce the occurrence of soil acidification, salinization, and serious soil-borne diseases, while to quickly and effectively remediate the degraded facility vegetable soil can considerably increase vegetable yield and farmers' income. In this paper, a degraded facility vegetable soil was amended with 0, 3.75, 7.50, and 11.3 t C x hm(-2) of air-dried alfalfa and flooded for 31 days to establish a strong reductive environment, with the variations of soil physical and chemical properties and the cucumber yield studied. Under the reductive condition, soil Eh dropped quickly below 0 mV, accumulated soil NO3(-) was effectively eliminated, soil pH was significantly raised, and soil EC was lowered, being more evident in higher alfalfa input treatments. After treated with the strong reductive approach, the cucumber yield in the facility vegetable field reached 53.3-57.9 t x hm(-2), being significantly higher than that in un-treated facility vegetable field in last growth season (10.8 t x hm(-2)). It was suggested that strong reductive approach could effectively remediate the degraded facility vegetable soil in a short term.


Assuntos
Conservação dos Recursos Naturais/métodos , Recuperação e Remediação Ambiental/métodos , Solo/química , Verduras/crescimento & desenvolvimento , Agricultura/métodos , China , Ecossistema , Poluentes do Solo/análise
19.
Sci Rep ; 3: 2342, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23907561

RESUMO

The mechanisms underlying the retention of inorganic N in acidic forest soils in southern China are not well understood. Here, we simultaneously quantified the gross N transformation rates of various subtropical acidic forest soils located in southern China (southern soil) and those of temperate forest soils located in northern China (northern soil). We found that acidic southern soils had significantly higher gross rates of N mineralization and significantly higher turnover rates but a much greater capacity for retaining inorganic N than northern soils. The rates of autotrophic nitrification and NH3 volatilization in acidic southern soils were significantly lower due to low soil pH. Meanwhile, the relatively higher rates of NO3(-) immobilization into organic N in southern soils can counteract the effects of leaching, runoff, and denitrification. Taken together, these processes are responsible for the N enrichment of the humid subtropical forest soils in southern China.


Assuntos
Compostos Inorgânicos/química , Compostos de Nitrogênio/química , Solo/química , Árvores/química , China , Concentração de Íons de Hidrogênio
20.
Ying Yong Sheng Tai Xue Bao ; 23(1): 109-14, 2012 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-22489487

RESUMO

Applying large amount of nitrogen fertilizer into vegetable field can induce soil NO(3-)-N accumulation, while rapidly removing the accumulated NO(3-)-N can improve vegetable soil quality and extend its service duration. In this study, a vegetable soil containing 360 mg N x kg(-1) was amended with 0, 2500, 5000, and 7500 kg C x hm(-2) of ryegrass (noted as CK, C2500, C5000, and C7500), respectively, and incubated in a thermostat at 30 degrees C for 240 h under flooding condition, aimed to investigate the effects of organic material amendment on vegetable soil nitrate concentration and nitrogenous gases emission. By the end of the incubation, the soil NO(3-)-N concentration in CK was still up to 310 mg N x kg(-1). Ryegrass amendment could remove the accumulated NO(3-)-N effectively. In treatments C2500, C5000, and C7500, the duration for the soil NO(3-)-N concentration dropped below 10 mg N x kg(-1) was 240 h, 48 h, and 24 h, respectively. After the amendment of ryegrass, soil pH increased significantly, and soil EC decreased, with the increment and decrement increased with increasing amendment amount of ryegrass. The cumulative emissions of soil N2O and N2 in ryegrass amendment treatments amounted to 270-378 mg N x kg(-1), and the N2O/N2 ratio ranged from 0.6 to 1.5. Incorporating with ryegrass under flooding condition could rapidly remove the accumulated NO(3-)-N in vegetable soil, but the high N2O emission during this process should be attached importance to.


Assuntos
Inundações , Lolium/química , Nitratos/análise , Solo/análise , Verduras/crescimento & desenvolvimento , Fertilizantes , Óxido Nitroso/análise , Compostos Orgânicos/química , Verduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA