Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(33): E4546-55, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240331

RESUMO

The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C-MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Enzimológica da Expressão Gênica , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Cromossomos/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Cinetocoros/ultraestrutura , Mitose , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos
2.
Proc Natl Acad Sci U S A ; 110(27): 11023-8, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776207

RESUMO

ArfGAP With Coiled-Coil, Ankyrin Repeat And PH Domains 4 (ACAP4) is an ADP-ribosylation factor 6 (ARF6) GTPase-activating protein essential for EGF-elicited cell migration. However, how ACAP4 regulates membrane dynamics and curvature in response to EGF stimulation is unknown. Here, we show that phosphorylation of the N-terminal region of ACAP4, named the Bin, Amphiphysin, and RSV161/167 (BAR) domain, at Tyr34 is necessary for EGF-elicited membrane remodeling. Domain structure analysis demonstrates that the BAR domain regulates membrane curvature. EGF stimulation of cells causes phosphorylation of ACAP4 at Tyr34, which subsequently promotes ACAP4 homodimer curvature. The phospho-mimicking mutant of ACAP4 demonstrates lipid-binding activity and tubulation in vitro, and ARF6 enrichment at the membrane is associated with ruffles of EGF-stimulated cells. Expression of the phospho-mimicking ACAP4 mutant promotes ARF6-dependent cell migration. Thus, the results present a previously undefined mechanism by which EGF-elicited phosphorylation of the BAR domain controls ACAP4 molecular plasticity and plasma membrane dynamics during cell migration.


Assuntos
Membrana Celular/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Movimento Celular/genética , Fator de Crescimento Epidérmico/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fosforilação , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
3.
J Biol Chem ; 289(12): 8326-36, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24519934

RESUMO

The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18ß, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18ß binding was mapped to residues 437-460. Depletion of Mis18ß by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18ß in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18ß, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18ß-HJURP interaction.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas Cromossômicas não Histona/análise , Proteínas de Ligação a DNA/análise , Humanos , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas
4.
J Biol Chem ; 289(38): 26249-26262, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25104354

RESUMO

Heterochromatin protein 1α (HP1α) is involved in regulation of chromatin plasticity, DNA damage repair, and centromere dynamics. HP1α detects histone dimethylation and trimethylation of Lys-9 via its chromodomain. HP1α localizes to heterochromatin in interphase cells but is liberated from chromosomal arms at the onset of mitosis. However, the structural determinants required for HP1α localization in interphase and the regulation of HP1α dynamics have remained elusive. Here we show that centromeric localization of HP1α depends on histone H3 Lys-9 trimethyltransferase SUV39H1 activity in interphase but not in mitotic cells. Surprisingly, HP1α liberates from chromosome arms in early mitosis. To test the role of this dissociation, we engineered an HP1α construct that persistently localizes to chromosome arms. Interestingly, persistent localization of HP1α to chromosome arms perturbs accurate kinetochore-microtubule attachment due to an aberrant distribution of chromosome passenger complex and Sgo1 from centromeres to chromosome arms that prevents resolution of sister chromatids. Further analyses showed that Mis14 and perhaps other PXVXL-containing proteins are involved in directing localization of HP1α to the centromere in mitosis. Taken together, our data suggest a model in which spatiotemporal dynamics of HP1α localization to centromere is governed by two distinct structural determinants. These findings reveal a previously unrecognized but essential link between HP1α-interacting molecular dynamics and chromosome plasticity in promoting accurate cell division.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Mitose , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Homólogo 5 da Proteína Cromobox , Cromossomos Humanos/metabolismo , Células HEK293 , Células HeLa , Heterocromatina/metabolismo , Humanos , Cinetocoros/metabolismo , Metiltransferases/metabolismo , Transporte Proteico , Proteínas Repressoras/metabolismo , Fuso Acromático/metabolismo
5.
J Biol Chem ; 289(30): 20638-49, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24917673

RESUMO

Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1 (HP1) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1. This borealin-HP1 interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1 interaction, demonstrating the spatial requirement of HP1 in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1 and CPC localization in the centromere and illustrate the critical role of borealin-HP1 interaction in orchestrating an accurate cell division.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos/metabolismo , Motivos de Aminoácidos , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/genética , Centrômero/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos/genética , Células HEK293 , Células HeLa , Humanos , Estrutura Terciária de Proteína
6.
J Biol Chem ; 288(22): 15771-85, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23595990

RESUMO

The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis.


Assuntos
Instabilidade Cromossômica/fisiologia , Cromossomos Humanos/metabolismo , Metáfase/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Pontos de Checagem do Ciclo Celular/fisiologia , Cromossomos Humanos/genética , Células HeLa , Humanos , Cinetocoros , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Multimerização Proteica/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição de p300-CBP/genética
7.
J Biol Chem ; 288(50): 36149-59, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24187132

RESUMO

The spindle assembly checkpoint (SAC) is a quality control device to ensure accurate chromosome attachment to spindle microtubule for equal segregation of sister chromatid. Aurora B is essential for SAC function by sensing chromosome bi-orientation via spatial regulation of kinetochore substrates. However, it has remained elusive as to how Aurora B couples kinetochore-microtubule attachment to SAC signaling. Here, we show that Hec1 interacts with Mps1 and specifies its kinetochore localization via its calponin homology (CH) domain and N-terminal 80 amino acids. Interestingly, phosphorylation of the Hec1 by Aurora B weakens its interaction with microtubules but promotes Hec1 binding to Mps1. Significantly, the temporal regulation of Hec1 phosphorylation orchestrates kinetochore-microtubule attachment and Mps1 loading to the kinetochore. Persistent expression of phosphomimetic Hec1 mutant induces a hyperactivation of SAC, suggesting that phosphorylation-elicited Hec1 conformational change is used as a switch to orchestrate SAC activation to concurrent destabilization of aberrant kinetochore attachment. Taken together, these results define a novel role for Aurora B-Hec1-Mps1 signaling axis in governing accurate chromosome segregation in mitosis.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Pontos de Checagem do Ciclo Celular , Proteínas do Citoesqueleto , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas Nucleares/química , Fosforilação , Estrutura Terciária de Proteína , Transporte Proteico
8.
J Biol Chem ; 284(34): 23072-82, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19553660

RESUMO

Mitosis is an orchestration of dynamic interactions between spindle microtubules and chromosomes, which is mediated by protein structures that include the kinetochores, and other protein complexes present on chromosomes. PinX1 is a potent telomerase inhibitor in interphase; however, its function in mitosis is not well documented. Here we show that PinX1 is essential for faithful chromosome segregation. Deconvolution microscopic analyses show that PinX1 localizes to nucleoli and telomeres in interphase and relocates to the periphery of chromosomes and the outer plate of the kinetochores in mitosis. Our deletion analyses mapped the kinetochore localization domain of PinX1 to the central region and its chromosome periphery localization domain to the C terminus. Interestingly, the kinetochore localization of PinX1 is dependent on Hec1 and CENP-E. Our biochemical characterization revealed that PinX1 is a novel microtubule-binding protein. Our real time imaging analyses show that suppression of PinX1 by small interference RNA abrogates faithful chromosome segregation and results in anaphase chromatid bridges in mitosis and micronuclei in interphase, suggesting an essential role of PinX1 in chromosome stability. Taken together, the results indicate that PinX1 plays an important role in faithful chromosome segregation in mitosis.


Assuntos
Segregação de Cromossomos/fisiologia , Microtúbulos/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/genética , Proteínas do Citoesqueleto , Células HeLa , Humanos , Cinetocoros/metabolismo , Microscopia de Fluorescência , Mitose/genética , Mitose/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA Interferente Pequeno , Fuso Acromático/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Biochem Biophys Res Commun ; 384(1): 76-81, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19393617

RESUMO

Mitotic chromosome movements are orchestrated by interactions between spindle microtubules and chromosomes. It is well known that kinetochore is the major site where microtubule-chromosome attachment occurs. However, the functions of other domains of chromosome such as chromosome periphery have remained elusive. Our previous studies show that PinX1 distributes to chromosome periphery and kinetochore during mitosis, and harbors the microtubule binding activity. Here we report that PinX1 interacts with Nucleolin, a chromosome periphery protein, through its C-termini. Deconvolution microscopic analyses show PinX1 mainly co-localizes with Nucleolin at chromosome periphery in prometaphase. Moreover, depletion of Nucleolin abolishes chromosome periphery localizations of PinX1, suggesting a functional interrelationship between PinX1 and Nucleolin. Importantly, repression of PinX1 and Nucleolin abrogates chromosome segregation in real-time mitosis, validating the functional importance of PinX1-Nucleolin interaction. We propose PinX1 is recruited to chromosome periphery by Nucleolin and a complex of PinX1 and Nucleolin is essential for faithful chromosome congression.


Assuntos
Pareamento Cromossômico , Mitose , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular , Cromossomos Humanos/metabolismo , Células HeLa , Humanos , Nucleolina
10.
PLoS One ; 9(9): e104723, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265012

RESUMO

The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ciclo Celular/química , Células HeLa , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Serina/metabolismo , Treonina/metabolismo
11.
PLoS One ; 9(10): e102547, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25299690

RESUMO

Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.


Assuntos
Actinas/metabolismo , Mitose/fisiologia , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Citoesqueleto de Actina/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Células HeLa , Humanos , Metáfase/fisiologia , Microtúbulos/metabolismo , Miosinas/metabolismo
12.
Sci Rep ; 3: 1681, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23652583

RESUMO

Cell motility and adhesion involve orchestrated interaction of microtubules (MTs) with their plus-end tracking proteins (+TIPs). However, the mechanisms underlying regulations of MT dynamics and directional cell migration are still elusive. Here, we show that DDA3-EB1 interaction orchestrates MT plus-end dynamics and facilitates directional cell migration. Biochemical characterizations reveal that DDA3 interacts with EB1 via its SxIP motif within the C-terminal Pro/Ser-rich region. Time-lapse and total internal reflection fluorescence (TIRF) microscopic assays demonstrate that DDA3 exhibits EB1-dependent, MT plus-end loading and tracking. The EB1-based loading of DDA3 is responsible for MT plus-ends stabilization at the cell cortex, which in turn orchestrates directional cell migration. Interestingly, the DDA3-EB1 interaction is potentially regulated by EB1 acetylation, which may account for physiological regulation underlying EGF-elicited cell migration. Thus, the EB1-based function of DDA3 links MT dynamics to directional cell migration.


Assuntos
Movimento Celular/fisiologia , Microtúbulos/fisiologia , Proteínas Motores Moleculares/fisiologia , Fosfoproteínas/fisiologia , Sítios de Ligação , Células HeLa , Humanos , Ligação Proteica
13.
J Mol Cell Biol ; 4(5): 331-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22831836

RESUMO

Histone methylation performs multiple functions such as DNA replication, transcription regulation, heterochromatin formation, and chromatin condensation. How this methylation gradient is orchestrated in the centromere during chromosome segregation is not known. Here we examine the temporal dynamics of protein methylation in the centromere by SUV39H1 methyltransferase, a key mitotic regulator, using fluorescence resonance energy transfer-based sensors in living HeLa cells and immunofluorescence of native SUV39H1 substrates. A quantitative analysis of methylation dynamics, using centromere-targeted sensors, reveals a temporal change during chromosome segregation. These dynamics result in an accurate chromosome congression to and alignment at the equator as an inhibition of methylation dynamics using SUV39H1 inhibitor perturbs chromosome congression in living HeLa cells. Surprisingly, this inhibition of methylation results in a brief increase in Aurora B kinase activity and an enrichment of microtubule depolymerase MCAK in the centromere with a concomitant kinetochore-microtubule destabilization and a reduced tension across the sister kinetochores with ultimate chromosome misalignments. We reason that SUV39H1 generates a gradient of methylation marks at the kinetochore that provides spatiotemporal information essential for accurate chromosome segregation in mitosis.


Assuntos
Centrômero/metabolismo , Segregação de Cromossomos/fisiologia , Metiltransferases/metabolismo , Mitose , Proteínas Repressoras/metabolismo , Aurora Quinase B , Aurora Quinases , Células HeLa , Humanos , Cinetocoros/metabolismo , Metilação , Metiltransferases/genética , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA