Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771878

RESUMO

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Assuntos
Doença de Huntington , Organoides , Humanos , Doença de Huntington/patologia , Doença de Huntington/metabolismo , Organoides/patologia , Organoides/metabolismo , Substância Negra/patologia , Substância Negra/metabolismo , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Diferenciação Celular , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Células-Tronco Pluripotentes/metabolismo , Optogenética
2.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413071

RESUMO

SUMMARY: Genomic data are often processed in batches and analyzed together to save time. However, it is challenging to combine multiple large VCFs and properly handle imputation quality and missing variants due to the limitations of available tools. To address these concerns, we developed IMMerge, a Python-based tool that takes advantage of multiprocessing to reduce running time. For the first time in a publicly available tool, imputation quality scores are correctly combined with Fisher's z transformation. AVAILABILITY AND IMPLEMENTATION: IMMerge is an open-source project under MIT license. Source code and user manual are available at https://github.com/belowlab/IMMerge.


Assuntos
Genoma , Genômica , Software
3.
Mikrochim Acta ; 191(4): 185, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451330

RESUMO

A dual-mode sensor was developed for detecting acetylcholinesterase (AChE) and organophosphorus pesticides (OPs) via bifunctional BSA-CeO2 nanoclusters (NCs) with oxidase-mimetic activity and fluorescence property. The dual-mode sensor has the characteristics of self-calibration and self-verification, meeting the needs of different detection conditions and provide more accurate results. The colorimetric sensor and fluorescence sensor have been successfully used for detecting AChE with limit of detection (LOD) of 0.081 mU/mL and 0.056 mU/mL, respectively, while the LOD for OPs were 0.9 ng/mL and 0.78 ng/mL, respectively. The recovery of AChE was 93.9-107.2% and of OPs was 95.8-105.0% in actual samples. A novel strategy was developed to monitor pesticide residues and detect AChE level, which will motivate future work to explore the potential applications of multifunctional nanozymes.


Assuntos
Acetilcolinesterase , Técnicas de Química Analítica , Praguicidas , Smartphone , Acetilcolinesterase/análise , Hidrogéis , Compostos Organofosforados , Praguicidas/efeitos adversos , Técnicas de Química Analítica/métodos
4.
Diabetologia ; 66(7): 1273-1288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148359

RESUMO

AIMS/HYPOTHESIS: The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population. METHODS: We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort. RESULTS: Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10-9). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance. CONCLUSIONS/INTERPRETATION: Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores. DATA AVAILABILITY: Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).


Assuntos
Diabetes Mellitus Tipo 2 , Saúde da População , Humanos , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/genética , Medicina de Precisão , Genótipo , Hispânico ou Latino/genética , Polimorfismo de Nucleotídeo Único/genética
5.
J Biol Chem ; 298(6): 101952, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447119

RESUMO

Extracellular small RNAs (sRNAs) are abundant in many biofluids, but little is known about their mechanisms of transport and stability in RNase-rich environments. We previously reported that high-density lipoproteins (HDLs) in mice were enriched with multiple classes of sRNAs derived from the endogenous transcriptome, but also from exogenous organisms. Here, we show that human HDL transports tRNA-derived sRNAs (tDRs) from host and nonhost species, the profiles of which were found to be altered in human atherosclerosis. We hypothesized that HDL binds to tDRs through apolipoprotein A-I (apoA-I) and that these interactions are conferred by RNA-specific features. We tested this using microscale thermophoresis and electrophoretic mobility shift assays and found that HDL binds to tDRs and other single-stranded sRNAs with strong affinity but did not bind to double-stranded RNA or DNA. Furthermore, we show that natural and synthetic RNA modifications influenced tDR binding to HDL. We demonstrate that reconstituted HDL bound to tDRs only in the presence of apoA-I, and purified apoA-I alone were able to bind sRNA. Conversely, phosphatidylcholine vesicles did not bind tDRs. In summary, we conclude that HDL binds to single-stranded sRNAs likely through nonionic interactions with apoA-I. These results highlight binding properties that likely enable extracellular RNA communication and provide a foundation for future studies to manipulate HDL-sRNA interactions for therapeutic approaches to prevent or treat disease.


Assuntos
Lipoproteínas HDL , Pequeno RNA não Traduzido , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Camundongos , Fosfatidilcolinas , Pequeno RNA não Traduzido/química
6.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37497995

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disease caused by a complex interaction of genetic and environmental factors and is characterized by persistent hyperglycemia. Long-term hyperglycemia can cause macrovascular and microvascular damage, and compromise the heart, brain, kidney, peripheral nerves, eyes and other organs, leading to serious complications. Genistein, a phytoestrogen derived from soybean, is known for its various biological activities and therapeutic properties. Recent studies found that genistein not only has hypoglycemic activity but can also decrease insulin resistance. In addition, genistein has particular activity in the prevention and treatment of diabetic complications, such as nephropathy, cardiovascular disease, osteoarthrosis, encephalopathy and retinopathy. Therefore, the purpose of this review is to summarize the latest medical research and progress of genistein in DM and related complications and highlights its potential molecular mechanisms and therapeutic targets. Meanwhile, evidence is provided for the development and application of genistein as a potential drug or functional food in the prevention and treatment of diabetes and its related complications.

7.
Handb Exp Pharmacol ; 281: 59-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37306818

RESUMO

Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Encéfalo , Neurônios , Diferenciação Celular , Organoides/fisiologia
8.
Mikrochim Acta ; 190(8): 336, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515610

RESUMO

A novel magnetic nanozyme Fe3O4@MXene-Au nanocomposite, which possessed higher peroxidase-like activity than that of Fe3O4 nanoparticles and Fe3O4@MXene nanocomposites, was developed. The outstanding magnetic properties of the nanozyme endowed it with the ability of simple and rapid separation, achieving great recyclability. Based on Fe3O4@MXene-Au nanocomposites and glucose oxidase (Glu Ox), a highly selective colorimetric biosensor for glucose detection was developed. Fe3O4@MXene-Au nanocomposites can catalyze H2O2 produced from glucose catalyzed by glucose oxidase to ·OH and oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) with a significant absorbance at 652 nm. The linear range of glucose was 0-1.4 mM under optimal conditions, with a limit of detection (LOD) of 0.11 mM. Glucose in human whole blood was successfully detected with satisfactory recoveries. Furthermore, a facile agarose hydrogel detection platform was designed. With smartphone software, glucose detection can be realized by the agarose hydrogel platform, demonstrating the potential in on-site and visual detection of glucose.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Humanos , Peroxidase , Glucose , Colorimetria , Glucose Oxidase , Smartphone , Peróxido de Hidrogênio , Sefarose , Peroxidases
9.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164201

RESUMO

SYAUP-CN-26 (1S, 2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide) is a novel sulfonamide compound with excellent activity against Botrytis cinerea. The present study sought to explore the mutant of B.cinerea resistant to SYAUP-CN-26 using SYAUP-CN-26 plates. Moreover, the cell membrane functions of B.cinerea, histidine kinase activity, relative conductivity, triglyceride, and cell membrane structure were determined, and the target gene histidine kinase Bos1 (AF396827.2) of procymidone was amplified and sequenced. The results showed that compared to the sensitive strain, the cell membrane permeability, triglyceride, and histidine kinase activity of the resistant strain showed significant changes. The relative conductivity of the sensitive strain increased by 6.95% and 9.61%, while the relative conductivity of the resistant strain increased by 0.23% and 1.76% with 26.785 µg/mL (EC95) and 79.754 µg/mL (MIC) of SYAUP-CN-26 treatment. The triglyceride inhibition rate of the resistant strain was 23.49% and 37.80%, which was 0.23% and 1.76% higher than the sensitive strain. Compared to the sensitive strain, the histidine kinase activity of the resistant strain was increased by 23.07% and 35.61%, respectively. SYAUP-CN-26 significantly damaged the cell membrane structure of the sensitive strain. The sequencing of the Bos1 gene of the sensitive and resistant strains indicated that SYAUP-CN-26 resistance was associated with a single point mutation (P348L) in the Bos1 gene. Therefore, it was inferred that the mutant of B.cinerea resistant to SYAUP-CN-26 might be regulated by the Bos1 gene. This study will provide a theoretical basis for further research and development of sulfonamide compounds for B. cinerea and new agents for the prevention and control of resistant B. cinerea.


Assuntos
Botrytis/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Sulfonamidas/farmacologia , Fungicidas Industriais/farmacologia
10.
Nanomedicine ; 35: 102307, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32987192

RESUMO

Recently, studies showed that the drug-resistant cell membranes have formed high-density lipid rafts regions; traditional targeted drug delivery systems can hardly break through the hard shell and deliver drugs to drug-resistant cells. Here, α-tocopherol polyethylene glycol 2000 succinate (TPGS2k) was successfully synthesized and used to modify poly (lactic-glycolic acid) nanoparticles co-loaded with doxorubicin (DOX) and simvastatin (SV) (SV/DOX@TPGS2k-PLGA NPs). The purpose of this study is to explore the synergistic effect between SV consuming cholesterol in lipid rafts and directly down-regulating P-gp expression on the intracellular drugs retention. The research highlights these nanoparticles interrupted lipid rafts (cholesterol-rich domains, where P-gp is often located), which inhibited drug efflux by down-regulating P-gp, promoted the mitochondria apoptosis and made SW620/AD300 cells (DOX-resistant colon cancer cell line) re-sensitized to DOX. Therefore, the carrier can become a promising SV-based nano-delivery system with depleting cholesterol in lipid rafts to reverse drug resistance.


Assuntos
Doxorrubicina , Portadores de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Nanopartículas , Sinvastatina , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Sinvastatina/química , Sinvastatina/farmacologia , alfa-Tocoferol/química , alfa-Tocoferol/farmacologia
11.
Anal Chem ; 92(11): 7770-7777, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348126

RESUMO

Titanium carbide quantum dots (Ti3C2 QDs) derived from two-dimensional (2D) Ti3C2Tx (MXene) are the rising-star material recently. Herein, nitrogen-doped Ti3C2 QDs (N-Ti3C2 QDs) were synthesized via a solvothermal method. The obtained N-Ti3C2 QDs exhibited excitation-dependent photoluminescence, antiphotobleaching, and dispersion stability. Furthermore, by combining the N-Ti3C2 QDs and DAP (2,3-diaminophenazine, the oxidative product of o-phenylenediamine) as a composite nanoprobe (N-Ti3C2 QDs@DAP), we developed a dual-emission reverse change ratiometric sensor to quantitatively monitor H2O2 based on photoinduced electron-transfer effects, where N-Ti3C2 QDs acted as the donor and DAP as the acceptor. On the basis of the xanthine converting into H2O2 through the catalysis of xanthine oxidase, the N-Ti3C2 QDs@DAP nanoprobe was also exploited for xanthine sensing. As a result, the proposed assay was demonstrated to be highly sensitive for H2O2 and xanthine with detection limits of 0.57 and 0.34 µM, respectively. In a word, we have investigated the application of N-Ti3C2 QDs in H2O2 and xanthine sensing and opened a new and exciting avenue for the N-Ti3C2 QDs in biosensing.


Assuntos
Peróxido de Hidrogênio/análise , Fenazinas/química , Pontos Quânticos/química , Titânio/química , Xantina/análise , Técnicas Biossensoriais , Medições Luminescentes , Nitrogênio/química , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
12.
Mediators Inflamm ; 2020: 6817156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963495

RESUMO

Inflammation can cause various chronic diseases like inflammatory bowel diseases. Various food protein-derived bioactive peptides (BAPs) with anti-inflammatory activity have the potential to manage these diseases. The aim of this paper is to overview the mechanisms and the molecular targets of BAPs to exert anti-inflammatory activity. In this review, the in vitro and in vivo effects of BAPs on intestinal inflammation are highlighted. The mechanism, pathways, and future perspectives of BAPs as the potential sources of therapeutic treatments to alleviate intestinal inflammation are provided, including nuclear factor-κB, mitogen-activated protein kinase, Janus kinase-signal transducer and activator of transcription, and peptide transporter 1 (PepT1), finding that PepT1 and gut microbiota are the promising targets for BAPs to alleviate the intestinal inflammation. This review provides a comprehensive understanding of the role of dietary BAPs in attenuating inflammation and gives a novel direction in nutraceuticals for people or animals with intestinal inflammation.


Assuntos
Inflamação/tratamento farmacológico , Inflamação/imunologia , Peptídeos/uso terapêutico , Animais , Microbioma Gastrointestinal/fisiologia , Humanos , Intestinos/imunologia , Transportador 1 de Peptídeos/metabolismo
13.
Mikrochim Acta ; 187(3): 187, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32088882

RESUMO

A novel electrochemical and fluorescence dual-signal assay was developed for the determination of hydrogen peroxide (H2O2) based on Fe3O4@MnO2 and N-doped carbon dots (NCDs). Fe3O4@MnO2 was not only applied as the recognizer for H2O2 but also served as the fluorescence quencher and electrochemical enhancer. This permits the dual-signal readout of the analytical system. In the absence of H2O2, the NCDs were quenched by Fe3O4@MnO2, and the oxidation of the electrochemical probe ferrocene (Fc) was catalyzed by Fe3O4@MnO2. In the presence of H2O2, MnO2 was reduced to Mn2+, leading to the fluorescence recovery of NCDs and the reduction in the oxidation signal of Fc. By combining the electrochemical method and the fluorescence assay, more comprehensive and valuable information for H2O2 determination was provided to meet different analytical demands. The method exhibits good repeatability and selectivity with a detection limit of 1.0 µM for the fluorescence assay and 0.6 µM for the electrochemical method. The proposed approach holds great potential for probing released targets from living cells. Graphical abstract.

14.
Mikrochim Acta ; 187(9): 492, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770422

RESUMO

A novel label-free and exonuclease III (Exo III)-assisted signal amplification electrochemical aptasensor was constructed for the determination of carcinoembryonic antigen (CEA) via magnetic field-induced self-assembly of magnetic biocomposites (Fe3O4@Au NPs-S1-S2-S3). The magnetic biocomposites were acquired by modifying double-stranded DNA (S1-S2-S3) on the surface of Fe3O4@Au nanoparticles (Fe3O4@Au NPs). Among them, Fe3O4@Au NPs were used as carriers for magnetic separation, thiolated single-stranded DNA (S1) provided signal sequence, CEA aptamer (S2) worked as a recognition element, and complementary strand (S3) was used to form double strands. In the presence of CEA, S2 bonded with CEA competitively; the exposed S1 could not be cleaved since Exo III was inactive against ssDNA. The G-quadruplex/hemin complexes finally formed with the existence of K+, and the high electrochemical signal of G-quadruplex/hemin complexes was recorded by differential pulse voltammetry (DPV) at - 0.6 V. Conversely, in the absence of CEA, dsDNA was cleaved from the 3' blunt end by Exo III; the disappearance of G-rich sequence blocked the generation of the signal. This method exhibited good selectivity and sensitivity for the determination of CEA; the linear range was from 0.1 to 200 ng mL-1 and the limit of detection was 0.4 pg mL-1. Graphical abstract.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Antígeno Carcinoembrionário/sangue , Técnicas Eletroquímicas/métodos , Exodesoxirribonucleases/química , Antígeno Carcinoembrionário/química , DNA de Cadeia Simples/química , Ouro/química , Humanos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Nanopartículas de Magnetita/química , Técnicas de Amplificação de Ácido Nucleico
15.
Mikrochim Acta ; 187(10): 575, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32970233

RESUMO

A highly sensitive and selective electrochemical biosensor for Pb2+ with a dual-amplification strategy is proposed. The first amplification step was realized by the cycle of Pb2+ and 8-17 DNAzyme (S2), and the hybridization chain reaction (HCR) triggered by S1 further amplified the electrochemical signal. Fe3O4@Au NPs, as a multifunctional magnetic carrier, is not only manifested in the construction of a magnetically controlled electrochemical response interface, but also has significant contribution in the purifying system, reducing interference, increasing the specific surface area, and the DNA loading. The magnetic nanocomposites were characterized by TEM as spheres with particle size of around 39 nm. When there was no Pb2+, long double-strand DNA (dsDNA) is formed on the surface of Fe3O4@Au NPs by the S1-triggered HCR; in the presence of Pb2+, S2 is activated and S1 on the surface of magnetic biocomposites (Fe3O4@Au NPs-S1) is continuously cleaved with the cycle of Pb2+ and S2, leading to a significant decrease of methylene blue (MB) absorbed on dsDNA. Such reverse dual-signal amplification strategy effectively increased the current difference and improved the sensitivity of the proposed sensor. The electrochemical signal of MB was obtained by differential pulse voltammetry (DPV) with preconcentration, showing a linear response toward Pb2+ ranging from 50 pM to 1 µM with a detection limit of 15 pM. The proposed method has feasible applications in detecting other heavy metal ions based on other metal-dependent DNAzyme. Graphical Abstract.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Técnicas Eletroquímicas/métodos , Hibridização de Ácido Nucleico/métodos , Humanos , Fenômenos Magnéticos
16.
Biomacromolecules ; 20(7): 2873-2887, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31185162

RESUMO

Currently, immunochemotherapy based on tumor-associated macrophages (TAMs) is mainly used for elimination of M2 macrophages. However, these methods cannot make full use of the positive immune-modulatory effects of macrophages. This study explores a two-way cruise strategy for combining immunotherapy based on TAM phenotype reversal with classical chemotherapy, the nanosatellites (DOX@HFn-PGZL@Res) are proposed to accurately deliver the chemotherapeutic agents and immune activators to their respective target cells. When the delivery system is recruited to tumor microenvironment, the nanosatellites are separated into DOX@HFn and Res@GZL nanoparticles, which can enter cancer cells and M2-TAMs, respectively. The data show that DOX@HFn-PGZL@Res successfully re-educate M2 to M1 macrophages, resulting in an activated immune response and inhibition of tumor invasion and metastasis. In general, this work describes a two-way homing nanoplatform for the integration of immunotherapy and chemotherapy, which provides a new idea for the "attack-defense" integrated treatment of tumor.


Assuntos
Antineoplásicos/química , Imunoterapia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Humanos , Lipossomos/química , Lipossomos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nanopartículas/uso terapêutico , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos
17.
Mycorrhiza ; 29(1): 29-38, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30421153

RESUMO

Invasive species often reduce ecosystem services and lead to a serious threat to native biodiversity. Roots of invasive plants are often linked to roots of native plants by common mycorrhizal networks (CMNs) of arbuscular mycorrhizal (AM) fungi, but whether and how CMNs mediate interactions between invasive and native plant species remains largely uninvestigated. We conducted two microcosm experiments, one in which we amended the soil with mineral N and another in which we amended the soil with mineral P. In each experiment, we grew a pair of test plants consisting of Kummerowia striata (native to our research site) and Solidago canadensis (an invasive species). CMNs were established between the plants, and these were either left intact or severed. Intact CMNs increased growth and nutrient acquisition by S. canadensis while they decreased nutrient acquisition by K. striata in comparison with severed CMNs. 15N and P analyses indicated that compared to severed CMNs, intact CMNs preferentially transferred mineral nutrients to S. canadensis. CMNs produced by different species of AM fungi had slightly different effects on the interaction between these two plant species. These results highlight the role of CMNs in the understanding of interactions between the invasive species S. canadensis and its native neighbor.


Assuntos
Fabaceae/metabolismo , Minerais/metabolismo , Micorrizas/fisiologia , Nutrientes/metabolismo , Solidago/metabolismo , Fabaceae/microbiologia , Espécies Introduzidas , Solidago/microbiologia
18.
Angew Chem Int Ed Engl ; 58(13): 4238-4242, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30688389

RESUMO

Amperometry with nanotip electrodes has been applied to show cocaine and methylphenidate not only trigger declines in vesicle content and exocytotic catecholamine release in a model cell line but also differentially change the fraction of transmitter released from each individual vesicle. In addition, cocaine accelerates exocytotic release dynamics while they remain unchanged after methylphenidate treatment. The parameters from pre-spike feet for the two drugs are also in opposition, suggesting this aspect of release is affected differentially. As cocaine and methylphenidate are psychostimulants with similar pharmacologic action but have opposite effects on cognition, these results might provide a missing link between the regulation of exocytosis and vesicles and the effect of this regulation on cognition, learning, and memory. A speculative chemical mechanism of the effect of these drugs on vesicle content and exocytosis is presented.


Assuntos
Técnicas Biossensoriais/métodos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Técnicas Eletroquímicas/métodos , Eletrodos , Exocitose/fisiologia , Metilfenidato/farmacologia , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Exocitose/efeitos dos fármacos , Células PC12 , Ratos
19.
Anal Chem ; 89(14): 7316-7323, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28657304

RESUMO

Transcription factors (TFs) regulate gene expression by binding to regulatory regions, and their dysregulation is involved in numerous diseases. Thus, they are therapeutic targets and potential diagnostic markers. However, widely used methods for TFs detection are either cumbersome or costly. Herein, we first applied DNA-Ag nanoclusters molecular beacons (AgMBs) in TFs analysis and designed an assay based on the switchable fluorescence of AgMBs. In the absence of TFs, a single-stranded DNA functioned as a reporter is released from a double-stranded DNA probe (referred as dsTFs probe) under exonuclease III (Exo III) digestion. Then, the reporter triggers downstream Exo III-assisted signal amplification by continuously consuming the guanine-rich enhancer sequences in AgMBs, resulting in significant fluorescent decrease eventually. Conversely, the presence of TFs protects the dsTFs probe from digestion and blocks the downstream reaction to keep a highly fluorescent state. To testify this rationale, we utilized nuclear factor-kappa B p50 (NF-κB p50) as a model TFs. Owing to the amplification strategy, this method exhibited high sensitivity toward NF-κB p50 with a limit of detection of 10 pM, and a broad linear range from 30 pM to 1.5 nM. Furthermore, this method could detect multiple TFs in human colon cancer DLD-1 cells and reflect the variation in their cellular levels after stimulation. Finally, by conducting an inhibition assay we revealed the potential of this method for screening TFs-targeted drugs and calculating the IC50 of corresponding inhibitors.


Assuntos
DNA/química , Exodesoxirribonucleases/química , Sondas Moleculares/química , Nanopartículas/química , Prata/química , Fatores de Transcrição/análise , Técnicas Biossensoriais , Exodesoxirribonucleases/metabolismo , Fluorescência , Humanos , Espectrometria de Fluorescência , Fatores de Transcrição/metabolismo
20.
Int J Biol Macromol ; 269(Pt 2): 132271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734330

RESUMO

As an anti-infection antibiotic delivery route, a drug-controlled release system based on a specific condition stimulus response can enhance drug stability and bioavailability, reduce antibiotic resistance, achieve on-demand release and improve targeting and utilization efficiency. In this study, chitosan-coated liposomes containing levofloxacin (Lef@Lip@CS) were prepared with lysozyme in body fluids serving as an intelligent "switch" to enable accurate delivery of antibiotics through the catalytic degradation ability of chitosan. Good liposome encapsulation efficacy (64.89 ± 1.86 %) and loading capacity (5.28 ± 0.18 %) were achieved. The controlled-release behavior and morphological characterization before and after enzymatic hydrolysis confirmed that the levofloxacin release rate depended on the lysozyme concentration and the degrees of deacetylation of chitosan. In vitro bacteriostatic experiments showed significant differences in the effects of Lef@Lip@CS before and after enzyme addition, with 6-h inhibition rate of 72.46 % and 100 %, and biofilm removal rates of 51 % and 71 %, respectively. These findings show that chitosan-coated liposomes are a feasible drug delivery system responsive to lysozyme stimulation.


Assuntos
Quitosana , Liberação Controlada de Fármacos , Levofloxacino , Lipossomos , Muramidase , Muramidase/química , Quitosana/química , Levofloxacino/farmacologia , Levofloxacino/administração & dosagem , Levofloxacino/química , Lipossomos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA