Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275605

RESUMO

In the current study, which focuses on the operational safety problem in intelligent three-dimensional garages, an obstacle avoidance measurement and control scheme for the AGV parking robot is proposed. Under the premise of high-precision distance detection using Kalman filtering, a mathematical model of a brushless DC (BLDC) motor with full-speed range hybrid control is established. MATLAB/Simulink (R2022a) is used to build the control model, which has dual closed-loop vector-controlled motors in the low- to medium-speed range, with photoelectric encoders for speed feedback. The simulation results show that, at lower to medium speeds, the maximum overshoot of the output response curve is 1.5%, and the response time is 0.01 s. However, at higher speeds, there is significant jitter in the speed output waveform. Therefore, the speed feedback is switched to a sliding mode observer (SMO) instead of the original speed sensor at high speeds. Experiments show that, based on the SMO, the problem of speed waveform jitter at high motor speeds can be significantly improved, and the BLDC motor system has strong robustness. The above shows that the motor speed under the full-speed range hybrid control system can meet the AGV control and safety requirements.

2.
Theor Appl Genet ; 135(12): 4409-4419, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201026

RESUMO

KEY MESSAGE: We identified and integrated the novel FHB-resistant Fhb7The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived (Thinopyrum elongatum, genome EE) Fhb7 allele, designated Fhb7The2, was identified and integrated into the wheat B genome through a small 7B-7E translocation (7BS·7BL-7EL) involving the terminal regions of the long arms. Fhb7The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum-derived Fhb7 allele Fhb7Thp. This will further improve the utility of Fhb7The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7The2, Fhb7Thp, and another Th. elongatum-derived Fhb7 allele Fhb7The1, which led to seven amino acid conversions in Fhb7The2, Fhb7Thp, and Fhb7The1, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7The2. The 7EL segment containing Fhb7The2 in the translocation chromosome 7BS·7BL-7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.


Assuntos
Fusarium , Triticum , Triticum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Poaceae/genética
3.
Theor Appl Genet ; 133(4): 1277-1289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970450

RESUMO

KEY MESSAGE: We performed homoeologous recombination-based partitioning and physical mapping of wheat chromosome 3B and Th. elongatum chromosome 3E, providing a unique physical framework of this homoeologous pair for genome studies. The wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) and Thinopyrum elongatum (2n = 2x = 14, EE) genomes can be differentiated from each other by fluorescent genomic in situ hybridization (FGISH) as well as molecular markers. This has facilitated homoeologous recombination-based partitioning and engineering of their genomes for physical mapping and alien introgression. Here, we constructed a special wheat genotype, which was double monosomic for wheat chromosome 3B and Th. elongatum chromosome 3E and homozygous for the ph1b mutant, to induce 3B-3E homoeologous recombination. Totally, 81 3B-3E recombinants were recovered and detected in the primary, secondary, and tertiary homoeologous recombination cycles by FGISH. Comparing to the primary recombination, the secondary and tertiary recombination shifted toward the proximal regions due to the increase in homology between the pairing partners. The 3B-3E recombinants were genotyped by high-throughput wheat 90-K single nucleotide polymorphism (SNP) arrays and their recombination breakpoints physically mapped based on the FGISH patterns and SNP results. The 3B-3E recombination physically partitioned chromosome 3B into 38 bins, and 429 SNPs were assigned to the distinct bins. Integrative analysis of FGISH and SNP results led to the construction of a composite bin map for chromosome 3B. Additionally, we developed 22 SNP-derived semi-thermal asymmetric reverse PCR markers specific for chromosome 3E and constructed a comparative map of homoeologous chromosomes 3E, 3B, 3A, and 3D. In summary, this work provides a unique physical framework for further studies of the 3B-3E homoeologous pair and diversifies the wheat genome for wheat improvement.


Assuntos
Cromossomos de Plantas/genética , Recombinação Homóloga/genética , Mapeamento Físico do Cromossomo , Poaceae/genética , Triticum/genética , Pontos de Quebra do Cromossomo , Polimorfismo de Nucleotídeo Único/genética
4.
Theor Appl Genet ; 133(12): 3455-3467, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32930833

RESUMO

KEY MESSAGE: We constructed a homoeologous recombination-based bin map of wheat chromosome 7B, providing a unique physical framework for further study of chromosome 7B and its homoeologues in wheat and its relatives. Homoeologous recombination leads to the dissection and diversification of the wheat genome. Advances in genome sequencing and genotyping have dramatically improved the efficacy and throughput of homoeologous recombination-based genome studies and alien introgression in wheat and its relatives. In this study, we aimed to physically dissect and map wheat chromosome 7B by inducing meiotic recombination of chromosome 7B with its homoeologues 7E in Thinopyrum elongatum and 7S in Aegilops speltoides. The special genotypes, which were double monosomic for chromosomes 7B' + 7E' or 7B' + 7S' and homozygous for the ph1b mutant, were produced to enhance 7B - 7E and 7B - 7S recombination. Chromosome-specific DNA markers were developed and used to pre-screen the large recombination populations for 7B - 7E and 7B - 7S recombinants. The DNA marker-mediated preselections were verified by fluorescent genomic in situ hybridization (GISH). In total, 29 7B - 7E and 61 7B - 7S recombinants and multiple chromosome aberrations were recovered and delineated by GISH and the wheat 90 K SNP assay. Integrated GISH and SNP analysis of the recombinants physically mapped the recombination breakpoints and partitioned wheat chromosome 7B into 44 bins with 523 SNPs assigned within. A composite bin map was constructed for chromosome 7B, showing the bin size and physical distribution of SNPs. This provides a unique physical framework for further study of chromosome 7B and its homoeologues. In addition, the 7B - 7E and 7B - 7S recombinants extend the genetic variability of wheat chromosome 7B and represent useful germplasm for wheat breeding. Thereby, this genomics-enabled chromosome engineering approach facilitates wheat genome study and enriches the gene pool of wheat improvement.


Assuntos
Aegilops/genética , Cromossomos de Plantas/genética , Genoma de Planta , Recombinação Homóloga , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Aegilops/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
5.
Theor Appl Genet ; 132(9): 2605-2614, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31183521

RESUMO

KEY MESSAGE: We identified, mapped and introduced novel Aegilops speltoides-derived resistance genes for tan spot and SNB diseases into wheat, enhancing understanding and utilization of host resistance to both diseases in wheat. Tan spot and Septoria nodorum blotch (SNB) are two important fungal diseases of wheat. Resistance to these diseases is often observed as the lack of sensitivity to the necrotrophic effectors (NE) produced by the fungal pathogens and thus exhibits a recessive inheritance pattern. In this study, we identified novel genes for resistance to tan spot and SNB on Aegilops speltoides (2n = 2x = 14, genome SS) chromosome 2S. These genes confer dominant resistance in the wheat background, indicating a distinct NE-independent mechanism of resistance. Ae. speltoides chromosome 2S was engineered for resistance gene introgression and molecular mapping by inducing meiotic homoeologous recombination with wheat chromosome 2B. Twenty representative 2B-2S recombinants were evaluated for reaction to tan spot and SNB and were delineated by genomic in situ hybridization and high-throughput wheat 90 K SNP assay. The resistance genes physically mapped to the sub-telomeric region (~ 8 Mb) on the short arm of chromosome 2S and designated TsrAes1 for tan spot resistance and SnbAes1 for SNB resistance. In addition, we developed SNP-derived PCR markers closely linked to TsrAes1/SnbAes1 for marker-assisted selection in wheat breeding. TsrAes1 and SnbAes1 are the first set of NE-independent tan spot, and SNB resistance genes are identified from Ae. speltoides. The 2SS-2BS·2BL recombinants with minimal amounts of Ae. speltoides chromatin containing TsrAes1/SnbAes1 were produced for germplasm development, making the wild species-derived resistance genes usable in wheat breeding. This will strengthen and diversify resistance of wheat to tan spot and SNB and facilitate understanding of resistance to these two diseases.


Assuntos
Aegilops/genética , Ascomicetos/fisiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Aegilops/crescimento & desenvolvimento , Aegilops/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos , Genótipo , Recombinação Homóloga , Interações Hospedeiro-Patógeno , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
6.
Funct Integr Genomics ; 18(2): 225-239, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29332191

RESUMO

Heat stress (HS) causes detrimental effects on plant morphology, physiology, and biochemistry that lead to drastic reduction in plant biomass production and economic yield worldwide. To date, little is known about HS-responsive genes involved in thermotolerance mechanism in radish. In this study, a total of 6600 differentially expressed genes (DEGs) from the control and Heat24 cDNA libraries of radish were isolated by high-throughput sequencing. With Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, some genes including MAPK, DREB, ERF, AP2, GST, Hsf, and Hsp were predominantly assigned in signal transductions, metabolic pathways, and biosynthesis and abiotic stress-responsive pathways. These pathways played significant roles in reducing stress-induced damages and enhancing heat tolerance in radish. Expression patterns of 24 candidate genes were validated by reverse-transcription quantitative PCR (RT-qPCR). Based mainly on the analysis of DEGs combining with the previous miRNAs analysis, the schematic model of HS-responsive regulatory network was proposed. To counter the effects of HS, a rapid response of the plasma membrane leads to the opening of specific calcium channels and cytoskeletal reorganization, after which HS-responsive genes are activated to repair damaged proteins and ultimately facilitate further enhancement of thermotolerance in radish. These results could provide fundamental insight into the regulatory network underlying heat tolerance in radish and facilitate further genetic manipulation of thermotolerance in root vegetable crops.


Assuntos
Genes de Plantas , Resposta ao Choque Térmico/genética , Raphanus/genética , Redes Reguladoras de Genes
7.
Planta ; 247(5): 1109-1122, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29368016

RESUMO

MAIN CONCLUSION: Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.


Assuntos
Resposta ao Choque Térmico , Raízes de Plantas/metabolismo , Raphanus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Proteômica , Raphanus/genética , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
8.
Theor Appl Genet ; 131(11): 2381-2395, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30109393

RESUMO

KEY MESSAGE: We physically dissected and mapped wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum based on meiotic homoeologous recombination, providing a unique physical framework for genome studies. Common wheat has a large and complex genome with narrow genetic diversity and various degrees of recombination between the A, B, and D subgenomes. This has limited the homologous recombination-based genome studies in wheat. Here, we exploited meiotic homoeologous recombination for molecular mapping of wheat chromosome 2B and its homoeologue 2S from Aegilops speltoides and 2E from Thinopyrum elongatum. The 2B-2S and 2B-2E recombination was induced by the ph1b mutant, and recovered using molecular markers and fluorescent genomic in situ hybridization (FGISH). A total of 112 2B-2S and 87 2B-2E recombinants involving different chromosome regions were developed and physically delineated by FGISH. The 2B-2S and 2B-2E recombination hotspots mapped to the subterminal regions on both arms. Recombination hotspots with the highest recombination rates mapped to the short arms. Eighty-three 2B-2S and 67 2B-2E recombinants were genotyped using the wheat 90 K SNP arrays. Based on the genotyping results and FGISH patterns of the recombinants, chromosomes 2B, 2S, and 2E were partitioned into 93, 66, and 46 bins, respectively. In total, 1037 SNPs physically mapped onto distinct bins of these three homoeologous chromosomes. A homoeologous recombination-based bin map was constructed for chromosome 2B, providing a unique physical framework for genome studies in wheat and its relatives. Meiotic homoeologous recombination also facilitates gene introgression to diversify the wheat genome for germplasm development. Therefore, homoeologous recombination-based studies enhance understanding of the wheat genome and its homoeologous counterparts from wild grasses, and expand the genetic variability of the wheat genome.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Recombinação Homóloga , Meiose , Poaceae/genética , Triticum/genética , Marcadores Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único
9.
Theor Appl Genet ; 131(2): 365-375, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29094182

RESUMO

KEY MESSAGE: This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome. Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.


Assuntos
Genoma de Planta , Triticum/genética , Cromossomos de Plantas/genética , Citogenética , Evolução Molecular , Genômica
10.
BMC Genomics ; 18(1): 505, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673249

RESUMO

BACKGROUND: Alternative splicing (AS) plays important roles in gene expression and proteome diversity. Single nucleotide polymorphism (SNP) and insertion/deletion (InDel) are abundant polymorphisms and co-dominant inheritance markers, which have been widely used in germplasm identification, genetic mapping and marker-assisted selection in plants. So far, however, little information is available on utilization of AS events and development of SNP and InDel markers from transcriptome in radish. RESULTS: In this study, three radish transcriptome datasets were collected and aligned to the reference radish genome. A total of 56,530 AS events were identified from three radish genotypes with intron retention (IR) being the most frequent AS type, which accounted for 59.4% of the total expressed genes in radish. In all, 22,412 SNPs and 9436 InDels were identified with an average frequency of 1 SNP/17.9 kb and 1 InDel/42.5 kb, respectively. A total of 43,680 potential SSRs were identified in 31,604 assembled unigenes with a density of 1 SSR/2.5 kb. The ratio of SNPs with nonsynonymous/synonymous mutations was 1.05:1. Moreover, 35 SNPs and 200 InDels were randomly selected and validated by Sanger sequencing, 83.9% of the SNPs and 70% of the InDels exhibited polymorphism among these three genotypes. In addition, the 15 SNPs and 125 InDels were found to be unevenly distributed on 9 linkage groups. Furthermore, 40 informative InDel markers were successfully used for the genetic diversity analysis on 32 radish accessions. CONCLUSIONS: These results would not only provide new insights into transcriptome complexity and AS regulation, but also furnish large amount of molecular marker resources for germplasm identification, genetic mapping and further genetic improvement of radish in breeding programs.


Assuntos
Processamento Alternativo , Mutação INDEL , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Raphanus/metabolismo , Transcriptoma , Melhoramento Vegetal , Raphanus/genética , Análise de Sequência de RNA
11.
Mol Genet Genomics ; 292(5): 1151-1163, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667404

RESUMO

Radish is an important root vegetable crop with high nutritional, economic, and medicinal value. Lignin is an important secondary metabolite possessing a great effect on plant growth and product quality. To date, lignin biosynthesis-related genes have been identified in some important plant species. However, little information on characterization of critical genes involved in plant lignin biosynthesis is available in radish. In this study, a total of 71,148 transcripts sequences were obtained from radish root, of which 66 assembled unigenes and ten candidate genes were identified to be involved in lignin monolignol biosynthesis. Full-length cDNA sequences of seven randomly selected genes were isolated and sequenced from radish root, and the assembled unigenes covered more than 80% of their corresponding cDNA sequences. Moreover, the lignin content gradually accumulated in leaf during the developmental stages, and it increased from pre-cortex to cortex splitting stage, followed by a decrease at thickening stage and then increased at mature stage in root. RT-qPCR analysis revealed that all these genes except RsF5H exhibited relatively low expression level in root at thickening stage. The expression profiles of Rs4CL5, RsCCoAOMT1, and RsCOMT genes were consistent with the changes of root lignin content, implying that these candidate genes may play important roles in lignin formation in radish root. These findings would provide valuable information for identification of lignin biosynthesis-related genes and facilitate dissection of molecular mechanism underlying lignin biosynthesis in radish and other root vegetable crops.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Lignina/biossíntese , Lignina/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raphanus/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/genética , Raphanus/metabolismo , Análise de Sequência de DNA , Transcriptoma/genética
12.
Plant Cell Rep ; 36(11): 1757-1773, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28819820

RESUMO

KEY MESSAGE: The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.


Assuntos
Evolução Molecular , Raphanus/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Funct Integr Genomics ; 16(5): 529-43, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27465294

RESUMO

Microsporogenesis is an indispensable period for investigating microspore development and cytoplasmic male sterility (CMS) occurrence. Radish CMS line plays a critical role in elite F1 hybrid seed production and heterosis utilization. However, the molecular mechanisms of microspore development and CMS occurrence have not been thoroughly uncovered in radish. In this study, a comparative analysis of radish floral buds from a CMS line (NAU-WA) and its maintainer (NAU-WB) was conducted using next generation sequencing (NGS) technology. Digital gene expression (DGE) profiling revealed that 3504 genes were significantly differentially expressed between NAU-WA and NAU-WB library, among which 1910 were upregulated and 1594 were downregulated. Gene ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly enriched in extracellular region, catalytic activity, and response to stimulus. KEGG enrichment analysis revealed that the DEGs were predominantly associated with flavonoid biosynthesis, glycolysis, and biosynthesis of secondary metabolites. Real-time quantitative PCR analysis showed that the expression profiles of 13 randomly selected DEGs were in high agreement with results from Illumina sequencing. Several candidate genes encoding ATP synthase, auxin response factor (ARF), transcription factors (TFs), chalcone synthase (CHS), and male sterility (MS) were responsible for microsporogenesis. Furthermore, a schematic diagram for functional interaction of DEGs from NAU-WA vs. NAU-WB library in radish plants was proposed. These results could provide new information on the dissection of the molecular mechanisms underlying microspore development and CMS occurrence in radish.


Assuntos
Gametogênese Vegetal/genética , Proteínas de Plantas/biossíntese , Raphanus/genética , Esporos/genética , Transcriptoma/genética , Citoplasma/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Raphanus/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Esporos/crescimento & desenvolvimento
14.
Theor Appl Genet ; 129(1): 31-43, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26385373

RESUMO

KEY MESSAGE: New molecular markers were developed and mapped to the FHB resistance QTL region in high resolution. Micro-collinearity of the QTL region with rice and Brachypodium was revealed for a better understanding of the genomic region. The wild emmer wheat (Triticum dicoccoides)-derived Fusarium head blight (FHB) resistance quantitative trait locus (QTL) Qfhs.ndsu-3AS previously mapped to the short arm of chromosome 3A (3AS) in a population of recombinant inbred chromosome lines (RICLs). This study aimed to attain a better understanding of the genomic region harboring Qfhs.ndsu-3AS and to improve the utility of the QTL in wheat breeding. Micro-collinearity of the QTL region with rice chromosome 1 and Brachypodium chromosome 2 was identified and used for marker development in saturation mapping. A total of 42 new EST-derived sequence tagged site (STS) and simple sequence repeat (SSR) markers were developed and mapped to the QTL and nearby regions on 3AS. Further comparative analysis revealed a complex collinearity of the 3AS genomic region with their collinear counterparts of rice and Brachypodium. Fine mapping of the QTL region resolved five co-segregating markers (Xwgc1186/Xwgc716/Xwgc1143/Xwgc501/Xwgc1204) into three distinct loci proximal to Xgwm2, a marker previously reported to be closely linked to the QTL. Four other markers (Xwgc1226, Xwgc510, Xwgc1296, and Xwgc1301) mapped farther proximal to the above markers in the QTL region with a higher resolution. Five homozygous recombinants with shortened T. dicoccoides chromosomal segments in the QTL region were recovered by molecular marker analysis and evaluated for FHB resistance. Qfhs.ndsu-3AS was positioned to a 5.2 cM interval flanked by the marker Xwgc501 and Xwgc510. The recombinants containing Qfhs.ndsu-3AS and new markers defining the QTL will facilitate utilization of this resistance source in wheat breeding.


Assuntos
Resistência à Doença/genética , Fusarium , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Brachypodium/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genoma de Planta , Genótipo , Repetições de Microssatélites , Oryza/genética , Doenças das Plantas/microbiologia , Sitios de Sequências Rotuladas , Triticum/microbiologia
15.
Plant Cell Rep ; 35(2): 329-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26518430

RESUMO

KEY MESSAGE: Transcriptome-based gene expression analysis identifies many critical salt-responsive genes in radish and facilitates further dissecting the molecular mechanism underlying salt stress response. Salt stress severely impacts plant growth and development. Radish, a moderately salt-sensitive vegetable crop, has been studied for decades towards the physiological and biochemical performances under salt stress. However, no systematic study on isolation and identification of genes involved in salt stress response has been performed in radish, and the molecular mechanism governing this process is still indistinct. Here, the RNA-Seq technique was applied to analyze the transcriptomic changes on radish roots treated with salt (200 mM NaCl) for 48 h in comparison with those cultured in normal condition. Totally 8709 differentially expressed genes (DEGs) including 3931 up- and 4778 down-regulated genes were identified. Functional annotation analysis indicated that many genes could be involved in several aspects of salt stress response including stress sensing and signal transduction, osmoregulation, ion homeostasis and ROS scavenging. The association analysis of salt-responsive genes and miRNAs exhibited that 36 miRNA-mRNA pairs had negative correlationship in expression trends. Reverse-transcription quantitative PCR (RT-qPCR) analysis revealed that the expression profiles of DEGs were in line with results from the RNA-Seq analysis. Furthermore, the putative model of DEGs and miRNA-mediated gene regulation was proposed to elucidate how radish sensed and responded to salt stress. This study represents the first comprehensive transcriptome-based gene expression profiling under salt stress in radish. The outcomes of this study could facilitate further dissecting the molecular mechanism underlying salt stress response and provide a valuable platform for further genetic improvement of salt tolerance in radish breeding programs.


Assuntos
Regulação da Expressão Gênica de Plantas , Raphanus/genética , Estresse Fisiológico/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raphanus/efeitos dos fármacos , Cloreto de Sódio/farmacologia
16.
BMC Genomics ; 16: 197, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25888374

RESUMO

BACKGROUND: Salt stress is one of the most representative abiotic stresses that severely affect plant growth and development. MicroRNAs (miRNAs) are well known for their significant involvement in plant responses to abiotic stresses. Although miRNAs implicated in salt stress response have been widely reported in numerous plant species, their regulatory roles in the adaptive response to salt stress in radish (Raphanus sativus L.), an important root vegetable crop worldwide, remain largely unknown. RESULTS: Solexa sequencing of two sRNA libraries from NaCl-free (CK) and NaCl-treated (Na200) radish roots were performed for systematical identification of salt-responsive miRNAs and their expression profiling in radish. Totally, 136 known miRNAs (representing 43 miRNA families) and 68 potential novel miRNAs (belonging to 51 miRNA families) were identified. Of these miRNAs, 49 known and 22 novel miRNAs were differentially expressed under salt stress. Target prediction and annotation indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as squamosa promoter binding-like proteins (SPLs), auxin response factors (ARFs), nuclear transcription factor Y (NF-Y) and superoxide dismutase [Cu-Zn] (CSD1). Further functional analysis suggested that these target genes were mainly implicated in signal perception and transduction, regulation of ion homeostasis, basic metabolic processes, secondary stress responses, as well as modulation of attenuated plant growth and development under salt stress. Additionally, the expression patterns of ten miRNAs and five corresponding target genes were validated by reverse-transcription quantitative PCR (RT-qPCR). CONCLUSIONS: With the sRNA sequencing, salt-responsive miRNAs and their target genes in radish were comprehensively identified. The results provide novel insight into complex miRNA-mediated regulatory network of salt stress response in radish, and facilitate further dissection of molecular mechanism underlying plant adaptive response to salt stress in root vegetable crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , RNA de Plantas , Raphanus/genética , Tolerância ao Sal/genética , Estresse Fisiológico , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Biblioteca Gênica , Anotação de Sequência Molecular , Raízes de Plantas/genética , Raphanus/metabolismo , Reprodutibilidade dos Testes , Transcriptoma
17.
BMC Plant Biol ; 15: 30, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644462

RESUMO

BACKGROUND: Radish (Raphanus sativus L.) is an economically important root vegetable crop, and the taproot-thickening process is the most critical period for the final productivity and quality formation. MicroRNAs (miRNAs) are a family of non-coding small RNAs that play an important regulatory function in plant growth and development. However, the characterization of miRNAs and their roles in regulating radish taproot growth and thickening remain largely unexplored. A Solexa high-throughput sequencing technology was used to identify key miRNAs involved in taproot thickening in radish. RESULTS: Three small RNA libraries from 'NAU-YH' taproot collected at pre-cortex splitting stage, cortex splitting stage and expanding stage were constructed. In all, 175 known and 107 potential novel miRNAs were discovered, from which 85 known and 13 novel miRNAs were found to be significantly differentially expressed during taproot thickening. Furthermore, totally 191 target genes were identified for the differentially expressed miRNAs. These target genes were annotated as transcription factors and other functional proteins, which were involved in various biological functions including plant growth and development, metabolism, cell organization and biogenesis, signal sensing and transduction, and plant defense response. RT-qPCR analysis validated miRNA expression patterns for five miRNAs and their corresponding target genes. CONCLUSIONS: The small RNA populations of radish taproot at different thickening stages were firstly identified by Solexa sequencing. Totally 98 differentially expressed miRNAs identified from three taproot libraries might play important regulatory roles in taproot thickening. Their targets encoding transcription factors and other functional proteins including NF-YA2, ILR1, bHLH74, XTH16, CEL41 and EXPA9 were involved in radish taproot thickening. These results could provide new insights into the regulatory roles of miRNAs during the taproot thickening and facilitate genetic improvement of taproot in radish.


Assuntos
MicroRNAs/genética , Raízes de Plantas/genética , Raphanus/genética , Transcriptoma
18.
BMC Genomics ; 14: 836, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24279309

RESUMO

BACKGROUND: Radish (Raphanus sativus L.), is an important root vegetable crop worldwide. Glucosinolates in the fleshy taproot significantly affect the flavor and nutritional quality of radish. However, little is known about the molecular mechanisms underlying glucosinolate metabolism in radish taproots. The limited availability of radish genomic information has greatly hindered functional genomic analysis and molecular breeding in radish. RESULTS: In this study, a high-throughput, large-scale RNA sequencing technology was employed to characterize the de novo transcriptome of radish roots at different stages of development. Approximately 66.11 million paired-end reads representing 73,084 unigenes with a N50 length of 1,095 bp, and a total length of 55.73 Mb were obtained. Comparison with the publicly available protein database indicates that a total of 67,305 (about 92.09% of the assembled unigenes) unigenes exhibit similarity (e -value ≤ 1.0e⁻5) to known proteins. The functional annotation and classification including Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the main activated genes in radish taproots are predominantly involved in basic physiological and metabolic processes, biosynthesis of secondary metabolite pathways, signal transduction mechanisms and other cellular components and molecular function related terms. The majority of the genes encoding enzymes involved in glucosinolate (GS) metabolism and regulation pathways were identified in the unigene dataset by targeted searches of their annotations. A number of candidate radish genes in the glucosinolate metabolism related pathways were also discovered, from which, eight genes were validated by T-A cloning and sequencing while four were validated by quantitative RT-PCR expression profiling. CONCLUSIONS: The ensuing transcriptome dataset provides a comprehensive sequence resource for molecular genetics research in radish. It will serve as an important public information platform to further understanding of the molecular mechanisms involved in biosynthesis and metabolism of the related nutritional and flavor components during taproot formation in radish.


Assuntos
Genes de Plantas , Glucosinolatos/metabolismo , Raízes de Plantas/genética , Raphanus/genética , Transcriptoma , Metabolismo dos Carboidratos/genética , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raphanus/metabolismo , Análise de Sequência de RNA , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Exp Bot ; 64(14): 4271-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014874

RESUMO

MicroRNAs (miRNAs) are endogenous non-coding small RNAs that play vital regulatory roles in plant growth, development, and environmental stress responses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to living organisms. To date, a number of conserved and non-conserved miRNAs have been identified to be involved in response to Cd stress in some plant species. However, the miRNA-mediated gene regulatory networks responsive to Cd stress in radish (Raphanus sativus L.) remain largely unexplored. To dissect Cd-responsive miRNAs and their targets systematically at the global level, two small RNA libraries were constructed from Cd-treated and Cd-free roots of radish seedlings. Using Solexa sequencing technology, 93 conserved and 16 non-conserved miRNAs (representing 26 miRNA families) and 28 novel miRNAs (representing 22 miRNA families) were identified. In all, 15 known and eight novel miRNA families were significantly differently regulated under Cd stress. The expression patterns of a set of Cd-responsive miRNAs were validated by quantitative real-time PCR. Based on the radish mRNA transcriptome, 18 and 71 targets for novel and known miRNA families, respectively, were identified by the degradome sequencing approach. Furthermore, a few target transcripts including phytochelatin synthase 1 (PCS1), iron transporter protein, and ABC transporter protein were involved in plant response to Cd stress. This study represents the first transcriptome-based analysis of miRNAs and their targets responsive to Cd stress in radish roots. These findings could provide valuable information for functional characterization of miRNAs and their targets in regulatory networks responsive to Cd stress in radish.


Assuntos
Cádmio/toxicidade , Genes de Plantas/genética , MicroRNAs/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raphanus/efeitos dos fármacos , Raphanus/genética , Pareamento de Bases/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biblioteca Gênica , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma/genética
20.
Chromosome Res ; 20(6): 699-715, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22968763

RESUMO

Thirteen common wheat "Chinese Spring" (CS)-Thinopyrum junceum addition lines and three common wheat "Fukuhokomuji"(Fuku)-Elymus rectisetus addition lines were characterized and verified as disomic additions of a Th. junceum or E. rectisetus chromosome in the wheat backgrounds by fluorescent genomic in situ hybridization. Another Fuku-E. rectisetus addition line, A1048, was found to contain multiple segregating E. rectisetus chromosomes. Seven partial CS-Th. junceum amphiploids were identified to combine 12-16 Th. junceum chromosomes with CS wheat chromosomes. The disomic addition lines AJDAj5, 7, 8, 9, and HD3508 were identified to contain a Th. junceum chromosome in homoeologous group 1. Two of them, AJDAj7 and AJDAj9, had the same Th. junceum chromosome. AJDAj2, 3, and 4 contained a Th. junceum chromosome in group 2, HD3505 in group 4, AJDAj6 and AJDAj11 in group 5, and AJDAj1 probably in group 6. The disomic addition lines A1026 and A1057 were identified to carry an E. rectisetus chromosome in group 1 and A1034 in group 5. E. rectisetus chromosomes in groups 1-6 were detected in A1048. The homoeologous group of the Th. junceum chromosome in HD3515 could not be determined in this study. Several Th. junceum and E. rectisetus chromosomes in the addition lines were found to contain genes for resistance to Fusarium head blight, tan spot, Stagonospora nodorum blotch, and stem rust (Ug99 races). Understanding of the homoeology of the Th. junceum and E. rectisetus chromosomes with wheat will facilitate utilization of the favorable genes on these alien chromosomes in wheat improvement.


Assuntos
Cruzamento/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Elymus/genética , Doenças das Plantas/microbiologia , Triticum/genética , Southern Blotting , Eletroforese em Gel de Poliacrilamida , Hibridização in Situ Fluorescente , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA