Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Anal Biochem ; 660: 114953, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243135

RESUMO

Human papillomaviruse type 16 (HPV16) is a high-risk serotype. As the main protective antigen protein, L1 protein is also the target protein for diagnosis. A simple label free electrochemical immunosensor (ECIS) was fabricated for ultrasensitive detection of HPV16 L1 protein in this work. Quasi-spherical Ag@Au core-shell nanoparticles on graphene oxide (Ag@AuNPs-GO) was developed as current response amplifier and characterized by UV-Vis Spectroscopy, Transmission Electron Microscopy and energy dispersive X-ray spectroscopy. Staphylococcal protein A was decorated on the modified electrode and utilized to immobilized the Fc portion of the monoclonal antibody specific for HPV16 L1 protein. Cyclic Voltammetry, Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy were used to verify the electrochemical performance and interfacial kinetic property. The increased concentration of HPV16 L1 protein led to slow electron transport and linearly decreased differential pulse voltammetry peak current with a detection limit of 0.002 ng mL-1 and a wide linear relationship in the range of 0.005-400 ng mL-1at a regression coefficient (R2) of 0.9948. Furthermore, this ECIS demonstrated acceptable accuracy with good reproducibility, stability and selectivity, suggesting a promising immunological strategy for HPV typing and early screening.


Assuntos
Alphapapillomavirus , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Ouro/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Reprodutibilidade dos Testes , Grafite/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
2.
J Solid State Electrochem ; 27(2): 489-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36466035

RESUMO

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL-1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL-1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.

3.
PLoS Pathog ; 16(6): e1008661, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32598377

RESUMO

Mycoplasmas are host-restricted prokaryotes with a nearly minimal genome. To overcome their metabolic limitations, these wall-less bacteria establish intimate interactions with epithelial cells at mucosal surfaces. The alarming rate of antimicrobial resistance among pathogenic species is of particular concern in the medical and veterinary fields. Taking advantage of the reduced mycoplasma genome, random transposon mutagenesis was combined with high-throughput screening in order to identify key determinants of mycoplasma survival in the host-cell environment and potential targets for drug development. With the use of the ruminant pathogen Mycoplasma bovis as a model, three phosphodiesterases of the DHH superfamily were identified as essential for the proliferation of this species under cell culture conditions, while dispensable for axenic growth. Despite a similar domain architecture, recombinant Mbov_0327 and Mbov_0328 products displayed different substrate specificities. While rMbovP328 protein exhibited activity towards cyclic dinucleotides and nanoRNAs, rMbovP327 protein was only able to degrade nanoRNAs. The Mbov_0276 product was identified as a member of the membrane-associated GdpP family of phosphodiesterases that was found to participate in cyclic dinucleotide and nanoRNA degradation, an activity which might therefore be redundant in the genome-reduced M. bovis. Remarkably, all these enzymes were able to convert their substrates into mononucleotides, and medium supplementation with nucleoside monophosphates or nucleosides fully restored the capacity of a Mbov_0328/0327 knock-out mutant to grow under cell culture conditions. Since mycoplasmas are unable to synthesize DNA/RNA precursors de novo, cyclic dinucleotide and nanoRNA degradation are likely contributing to the survival of M. bovis by securing the recycling of purines and pyrimidines. These results point toward proteins of the DHH superfamily as promising targets for the development of new antimicrobials against multidrug-resistant pathogenic mycoplasma species.


Assuntos
Proteínas de Bactérias/metabolismo , Mycoplasma bovis/enzimologia , Pirofosfatases/metabolismo , Ribonucleases/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Camundongos , Camundongos Endogâmicos BALB C , Mycoplasma bovis/genética , Pirofosfatases/genética , Ribonucleases/genética
4.
Appl Microbiol Biotechnol ; 106(3): 1151-1164, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35037999

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease (COVID-19). It is confirmed that nucleocapsid (N) protein is closely related to viral pathogenesis, modulation of host immune response, RNA transcription, and replication and virus packaging. Therefore, the N protein is a preponderant antigen target for virus detection. The codon-optimized N gene was designed according to the encoding characteristics of insect cells and inserted into pFastBacTM1 vector with 6 × His-tag-fused N protein for expression in insect sf21 cells. Six anti-N mAbs (4G3, 5B3, 12B6, 18C7-A2, 21H10-A3, 21H10-E9) were prepared by recombinant N protein. The mAbs showed high titers, antibody affinity, and reactivity with the SARS-CoV-2 N protein. Then, fourteen overlapped peptides that covered the intact N protein were synthesized (N1-N14). Peptide N14 was identified as the main linear B-cell epitope region via peptide-ELISA and dot-blot assay, and this region was truncated gradually until mapping the peptide 401-DFSKQLQQ-408. Simultaneously, compared with the sequence of variants of concern (VOCs) and variants of interest (VOIs) strains among the several countries, epitope 401-DFSKQLQQ-408 is very conservative among them. The findings provide new guidance for the design and detection of COVID-19 targets. KEY POINTS: • The N protein was optimized according to the insect cell codon preference and was highly expressed. • The monoclonal antibodies prepared in this study were shown high antibody titers and high affinity. • Monoclonal antibodies were used to map the epitope 401-408 amino acids of N protein for the first time in this study.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo , Anticorpos Monoclonais , Anticorpos Antivirais , Mapeamento de Epitopos , Epitopos de Linfócito B , Humanos , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
5.
Lett Appl Microbiol ; 74(6): 1001-1007, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35255156

RESUMO

African swine fever (ASF), a highly contagious and lethal disease, poses a tremendous threat and burden to the swine industry worldwide. Lack of available vaccines or treatments leaves rapid diagnosis as the key tool to control the disease. Quantum dots (QDs) are unique fluorescent semiconductor nanoparticles, highly versatile for biological applications. In this study, we developed a quantum dots-based fluorescent immunochromatographic assay (QDs-FICA) using CD2v as the diagnosis antigen to detect ASFV antibodies. The titre of the test strip was 1 : 5·12 × 105 . In addition, the strip was highly specific to anti-ASFV serum and had no cross-reaction with CSFV, PPV, PRRSV, PCV-2, PRV and FMDV. Moreover, a comparative test of 71 clinical samples showed that the coincidence rate was 85·92% between the test strip and the commercial ELISA kit (coated with p30, p62 and p72). The QDs-FICA can be used to detect ASFV antibodies, which is meaningful for the surveillance, control and purification of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Pontos Quânticos , Febre Suína Africana/diagnóstico , Febre Suína Africana/prevenção & controle , Animais , Diagnóstico Diferencial , Imunoensaio , Suínos
6.
Luminescence ; 37(8): 1300-1308, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35637545

RESUMO

Bacitracin zinc (BAC), a polypeptide antibiotic, is utilized as a feed additive due to its ability to promote growth in animals. However, the abuse of BAC can lead to a great threat to food safety. Therefore, there is an urgent need to develop a rapid and sensitive detection method. In this study, a monoclonal antibody (mAb) against BAC with excellent sensitivity and specificity was obtained. For the first time, quantum dots (QDs) were conjugated with the prepared mAb against BAC and rabbit anti-mouse antibody to fabricate a direct and an indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) to detect BAC. The IC50 of dc-FLISA and ic-FLISA were 0.28 ng/ml and 0.17 ng/ml, respectively. The limits of detection were 0.0016 ng/ml and 0.001 ng/ml, respectively, and the detection ranges were 0.0016-46.50 ng/ml and 0.001-35.65 ng/ml, respectively. In addition, the recovery rate of the two methods ranged from 93.5% to 112.0%, and the coefficient of variation (CV) was less than 10%. Therefore, the methods developed in this work have the merits of low cost, simple operation, and high sensitivity, which provide an effective analytical tool for BAC residue detection in feed samples.


Assuntos
Pontos Quânticos , Animais , Anticorpos Monoclonais/química , Bacitracina , Ensaio de Imunoadsorção Enzimática/métodos , Imunoadsorventes/química , Limite de Detecção , Pontos Quânticos/química , Coelhos
7.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35682904

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the pathogenic agent leading to COVID-19. Due to high speed of transmission and mutation rates, universal diagnosis and appropriate prevention are still urgently needed. The nucleocapsid protein of SARS-CoV-2 is considered more conserved than spike proteins and is abundant during the virus' life cycle, making it suitable for diagnostic applications. Here, we designed and developed a fluorescent immunochromatography assay (FICA) for the rapid detection of SARS-CoV-2-specific antibodies using ZnCdSe/ZnS QDs-conjugated nucleocapsid (N) proteins as probes. The nucleocapsid protein was expressed in E.coli and purified via Ni-NTA affinity chromatography with considerable concentration (0.762 mg/mL) and a purity of more than 90%, which could bind to specific antibodies and the complex could be captured by Staphylococcal protein A (SPA) with fluorescence displayed. After the optimization of coupling and detecting conditions, the limit of detection was determined to be 1:1.024 × 105 with an IgG concentration of 48.84 ng/mL with good specificity shown to antibodies against other zoonotic coronaviruses and respiratory infection-related viruses (n = 5). The universal fluorescent immunochromatography assay simplified operation processes in one step, which could be used for the point of care detection of SARS-CoV-2-specific antibodies. Moreover, it was also considered as an efficient tool for the serological screening of potential susceptible animals and for monitoring the expansion of virus host ranges.


Assuntos
COVID-19 , Pontos Quânticos , Animais , Anticorpos Antivirais , COVID-19/diagnóstico , Cromatografia de Afinidade , Proteínas do Nucleocapsídeo , SARS-CoV-2 , Sensibilidade e Especificidade
8.
Microb Pathog ; 143: 104135, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32165330

RESUMO

Mycoplasma bovis is a risky pathogen mainly responsible for pneumonia and mastitis in cattle. Up to date, its pathogenesis is not clear. Since secreted proteins have a tricky role in M. bovis pathogenesis, this study was designed to systematically reveal M. bovis secretome and potential role in virulence of the pathogen. By using bioinformatics tools, a total of 246 secreted proteins were predicted based on M. bovis genome. Among them, 14 were classical, 154 non-classical and 78 both pathways. Then by using 2-dimensional gel electrophoresis (2-DE) and Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF- MS), 169 proteins were revealed. Of them, 60 were predicted to be secreted including 3 classical, 43 non-classical, and 14 both classical and non-classical. Further 8 proteins (MbovP0038, MbovP0338, MbovP0341, MbovP0520, MbovP0581, MbovP0674, MbovP0693, MbovP0845) were predicted to be virulence-related factors with VFDB. In addition, MbovP0581 (ABC transporter protein) was validated experimentally as secreted in nature and highly immunogenic reacting with sera of cattle experimentally infected with M. bovis. In conclusion, this study might be a crucial step towards a better understanding of pathogenesis and leading to the development of novel diagnostic marker and potent vaccine against M. bovis.


Assuntos
Proteínas de Bactérias/metabolismo , Mycoplasma bovis/metabolismo , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Sequência Conservada/genética , Eletroforese em Gel Bidimensional , Genoma Bacteriano/genética , Genômica , Espectrometria de Massas , Mycoplasma bovis/genética , Mycoplasma bovis/patogenicidade , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Virulência
9.
Microb Pathog ; 111: 108-117, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28826770

RESUMO

This study was undertaken to determine the genotypic distribution of Chinese M. bovis strains and their similarity to isolates from other countries. Two multilocus sequence typing (MLST) schemes (MLST-1 and MLST-2) and pulsed field gel electrophoresis (PFGE) were used to compare 44 Chinese strains and the M. bovis type strain PG45. The results showed a high genetic homogeneity of Chinese isolates; 43 of 44 (97.7%) Chinese isolates were identified as ST-10 and as ST-34 by MLST-1, while for MLST-2 42 of 44 (95.5%) were identified as ST-10 with the two remaining isolates of ST-32 and ST43. PFGE clustered 42 of 44 (95.5%) of the Chinese isolates into PT-I. The overall agreement rate between the three typing methods was 97.8% (95% CI:86.8-99.9%). The type strain PG45 was identified as a unique type by all three methods. When the MLST-2 scheme was further used to analyze 16 isolates of Australian and Israeli origin ST-10 was more dominant among Australian isolates (7/8), compared with those from Israel (3/8). The evolutionary relationship of the 60 isolates typed in this study assessed together with 206 additional isolates retrieved from pubmlst/mbovis database analyzed by geoBURST Minimum spanning tree (MST) confirmed that the Chinese, Israeli and Australian M. bovis isolates typed in this study that were predominantly ST-10, were clustered in CC3 with isolates originating from the USA. Our results suggest that ST-10 is an emerging clone of M. bovis population. We hypothesized that the widespread distribution of this type is a result of global livestock movements. These findings will help further the understanding of the global evolution of M. bovis and development of novel vaccines against M. bovis.


Assuntos
Evolução Molecular , Genótipo , Mycoplasma bovis/classificação , Mycoplasma bovis/genética , Mycoplasma bovis/isolamento & purificação , Análise de Variância , Animais , Austrália , Bovinos , Doenças dos Bovinos/microbiologia , China , DNA Bacteriano , Eletroforese em Gel de Campo Pulsado/métodos , Genes Bacterianos/genética , Variação Genética , Israel , Epidemiologia Molecular , Tipagem de Sequências Multilocus/métodos , Análise de Sequência de DNA , Estados Unidos , Sequenciamento Completo do Genoma
10.
J Sep Sci ; 40(9): 2054-2061, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28252250

RESUMO

A novel method named effective length calibration method has been developed to process the fluorescence signal detected by charge-coupled device during capillary electrophoresis. The new method treated each pixel as an individual point detector, and effectively binned a large number of pixels into a final electropherogram without losing the narrow detection window defined by a single pixel. Capillary electrophoresis separations of DNA were carried out and detected by charge-coupled device and conventional detector (photomultiplier tube). Detection properties including signal-to-noise ratio, peak width, detection frequency, and tilt of detector were investigated. It was found that the new method achieved much higher signal-to-noise ratio and smaller peak width than the conventional detector did. A Detection width of 0.5 µm was easily achieved.


Assuntos
DNA/análise , Eletroforese Capilar , Fluorescência , Calibragem
11.
J Sep Sci ; 39(5): 986-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26648455

RESUMO

Capillary polymer electrophoresis is identified as a promising technology for the analysis of DNA from bacteria, virus and cell samples. In this paper, we propose an innovative capillary polymer electrophoresis protocol for the quantification of polymerase chain reaction products. The internal standard method was modified and applied to capillary polymer electrophoresis. The precision of our modified internal standard protocol was evaluated by measuring the relative standard deviation of intermediate capillary polymer electrophoresis experiments. Results showed that the relative standard deviation was reduced from 12.4-15.1 to 0.6-2.3%. Linear regression tests were also implemented to validate our protocol. The modified internal standard method showed good linearity and robust properties. Finally, the ease of our method was illustrated by analyzing a real clinical oral sample using a one-run capillary polymer electrophoresis experiment.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Eletroforese Capilar/métodos , Boca/microbiologia , Reação em Cadeia da Polimerase/métodos , Bactérias/química , Bactérias/isolamento & purificação , Proteínas de Bactérias/análise , Eletroforese Capilar/instrumentação , Humanos , Polímeros/química
12.
Electrophoresis ; 36(14): 1651-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25867445

RESUMO

The analysis of small interfering RNA (siRNA) is important for gene function studies and drug developments. We employed CE to study the separation of siRNA ladder marker, which were ten double-stranded RNA (dsRNA) fragments ranged from 20 to 1000 bp, in solutions of hydroxyethylcellulose (HEC) polymer with different concentrations and molecular weights (Mws). Migration mechanism of dsRNA during CE was studied by the mobility and resolution length (RL) plots. We found that the RL depended on not only the concentration of HEC, but also the Mw of HEC. For instance, RL of small dsRNA fragment was more influenced by concentration of high Mw HEC than large dsRNA fragment and RL of large dsRNA fragment was more influenced by concentration of low Mw HEC than small dsRNA fragment. In addition, we found electrophoretic evidence that the structure of dsRNA was more compact than dsDNA with the same length. In practice, we succeeded to separate the glyceraldehyde 3-phosphate dehydrogenase siRNA in the mixture of the siRNA ladder marker within 4 min.


Assuntos
Eletroforese Capilar/métodos , RNA Interferente Pequeno/química , Celulose/análogos & derivados , Celulose/química , Soluções
13.
J Sep Sci ; 38(20): 3638-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26289302

RESUMO

Programmed step electric field strength is a simple-to-use technique that has already been reported to be effective to enhance the efficiency or speed of DNA electrophoresis. However, a global understanding and the details of this technique are still vague. In this paper, we investigated the influence of programmed step electric field strength by theoretical calculation and concentrated on a basic format named as two-step electric field strength. Both subtypes of two-step electric field strength conditions were considered. The important parameters, such as peak spacing, peak width, resolution, and migration time, were calculated in theory to understand the performance of DNA electrophoresis under programmed step electric field strength. The influence of two-step electric field strength on DNA electrophoresis was clearly revealed on a diagram of resolution versus migration time. Both resolution and speed of DNA electrophoresis under two-step electric field strength conditions are simply expressed by the shape of curves in the diagram. The possible shapes of curve were explored by calculation and shown in this paper. The subtype II of two-step electric field strength brings drastic variation on the resolution. Its limitations of enhancement and deterioration of resolution were predicted in theory.


Assuntos
DNA/isolamento & purificação , Campos Eletromagnéticos , DNA/química , Eletroforese Capilar
14.
Int J Biol Macromol ; : 134559, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128749

RESUMO

ASFV is the only known double-stranded insect-borne DNA virus, which can rapidly infect domestic pigs and wild boars with ticks as transmission medium. Since it was first discovered in 1921, it quickly spread to all parts of the world and brought huge economic losses to the pig industry all over the world. At present, there is still no safe and effective vaccine for ASFV. Here, we developed a quantum-dot labeled antibody test strip for the detection of antibodies against ASFV pp62. The pp62 protein was labeled with quantum dots, and the antibody test strip was developed uses it in a detection mode of labeled antigen-SPA interceptor-monoclonal antibody quality control. The test strip showed high sensitivity, the positive detection limit of the strip was 1: 106 by continuous multiple dilution using the positive standard serum of ASFV antibody as reference. The test strip showed good specificity, and there was no cross reaction with other swine diseases virus (PCV2, PRRSV, CSFV, PPV). Using the detection results of commercialized kit for African swine fever virus as reference, 80 ASFV antibody negative sera and 4 different ASFV antibody positive sera were detected using the ASFV pp62 quantum-dot labeled antibody test strip. The results were consistent with the commercial kit. This study provides a new detection method for the prevention and control of African swine fever.

15.
Carbohydr Polym ; 328: 121689, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220319

RESUMO

Influenza A virus (IAV) poses a significant threat to human and animal health, necessitating the development of universal influenza vaccines that can effectively activate mucosal immunity. Intranasal immunization has attracted significant attention due to its capacity to induce triple immune responses, including mucosal secretory IgA. However, inducing mucosal immunity through vaccination is challenging due to the self-cleansing nature of the mucosal surface. Thiolated chitosan (TCS) were explored for mucosal vaccine delivery, capitalizing on biocompatibility and bioadhesive properties of chitosan, with thiol modification enhancing mucoadhesive capability. The focus was on developing a universal nanovaccine by utilizing TCS-encapsulated virus-like particles displaying conserved B-cell and T-cell epitopes from M2e and NP proteins of IAV. The optimal conditions for nanoparticle formation were investigated by adjusting the thiol groups content of TCS and the amount of sodium tripolyphosphate. The nanovaccine induced robust immune responses and provided complete protection against IAVs from different species following intranasal immunization. The broad protective effect of nanovaccines can be attributed to the synergistic effect of antibodies and T cells. This study developed a universal intranasal nanovaccine and demonstrated the potential of TCS in the development of mucosal vaccines for respiratory infectious diseases.


Assuntos
Quitosana , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Humanos , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Nanovacinas , Imunidade Celular , Compostos de Sulfidrila , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
16.
J Virol Methods ; 324: 114855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013021

RESUMO

The L1 protein of Human papillomavirus (HPV), the main capsid protein, induces the formation of neutralizing antibodies. In this study, HPV52 L1 protein was induced to be expressed. Monoclonal antibody (mAb) 6A7 against L1 protein were screened by cell fusion techniques. Western Blot and immunofluorescence assay (IFA) demonstrated the specificity of the mAb. The L1 protein was truncated for prokaryotic expression (N1∼N7) and Dot-ELISA showed that 6A7 recognized N3 (aa 200-350). The immunodominant regions were truncated again for expression, with 6A7 recognizing N6 (aa 251-305). The N6 proteins were further truncated and then were constructed an four-segment eukaryotic expression vector. IFA showed that 6A7 could recognize amino acid 262-279. Amino acid 262-279 was selected to be truncated into short peptides P1 and P2. Finally, Peptide-ELISA and Dot-ELISA showed that the epitope regions of mAb 6A7 were amino acid 262-273. The mAbs with defined epitopes can lay the foundation for the analysis of antigenic epitope characteristics and promote the development of epitope peptide vaccines.


Assuntos
Proteínas do Capsídeo , Epitopos de Linfócito B , Humanos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/química , Anticorpos Monoclonais , Papillomaviridae , Aminoácidos , Anticorpos Antivirais , Mapeamento de Epitopos
17.
Food Chem ; 461: 140009, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-39167943

RESUMO

A label-free electrochemical immunosensor was developed to rapidly detect tilmicosin (TMC) residues in pork and milk. The immunosensor was constructed by immobilizing a high-affinity monoclonal antibody against TMC on an rGO-PEI-Ag nanocomposite-modified electrode. The rGO-PEI-Ag nanocomposites were prepared by mixing polyethyleneimine (PEI) modified reduced graphene oxide (rGO) with AgNO3 solution. The prepared rGO-PEI-Ag nanocomposites showed good redox activity and conductivity, as characterized by ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), and X-ray diffraction (XRD). During the preparation process, staphylococcal protein A (SPA) was added to targetedly bind the Fc segment of the monoclonal antibody. The immunosensor showed a low detection limit (LOD) of 0.0013 ng/mL, a linear range of 0.01-100 ng/mL, and recoveries ranging from 92.77 to 100.02% in pork and 92.26-101.23% in milk. Furthermore, the immunosensor exhibited good stability, reproducibility, and specificity in detecting TMC in pork and milk real samples.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38502862

RESUMO

Lomefloxacin (LMF), a third-generation fluoroquinolone antibacterial agent, is often used to treat bacterial and mycoplasma infections. However, due to its prolonged half-life and slow metabolism, it is prone to residues in animal-derived foods, posing a potential food safety risk. Therefore, it is particularly urgent and important to establish a method for detecting lomefloxacin. In this study, direct and indirect competitive fluorescence-linked immunosorbent assay (dc-FLISA and ic-FLISA) based on quantum dots (QDs) was established for the detection of LMF. As for dc-FLISA, the half-maximal inhibitory concentration (IC50) and limit of detection (LOD) were 0.84 ng/mL, 0.04 ng/mL, respectively, the detection ranges from 0.08 to 9.11 ng/mL. The IC50 and LOD of ic-FLISA were 0.43 ng/mL and 0.03 ng/mL, respectively, meanwhile the detection ranges from 0.05 to 3.49 ng/mL. The recoveries of dc-FLISA and ic-FLISA in animal-derived foods (milk, fish, chicken, and honey), ranged from 95.8% to 105.2% and from 96.3% to 103.4%, respectively, with the coefficients of variation less than 8%. These results suggest that the dc-FLISA and ic-FLISA methods, which are based on QD labelling, are highly sensitive and cost-effective, and can be effectively used to detect LMF in animal-derived foods.


Assuntos
Galinhas , Fluoroquinolonas , Contaminação de Alimentos , Leite , Pontos Quânticos , Pontos Quânticos/química , Animais , Contaminação de Alimentos/análise , Fluoroquinolonas/análise , Leite/química , Mel/análise , Fluorescência , Antibacterianos/análise , Ensaio de Imunoadsorção Enzimática , Análise de Alimentos
19.
Int J Biol Macromol ; 264(Pt 2): 130689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458287

RESUMO

African Swine Fever Virus (ASFV) is a highly contagious pathogen posing a serious threat to the global swine industry. Despite this, there is currently no effective vaccine against this virus. Within ASFV's core shell structure, p37, a product of polyprotein pp220, shares sequence similarity with SUMO-1 proteases. Localization studies show p37 in various nuclear regions during early infection, shifting to the cytoplasm later on. Research indicates active export of p37 from the nucleus, mediated by CRM1-dependent and -independent pathways. Hydrophobic amino acids in p37 are crucial for these pathways, highlighting their importance throughout the ASFV replication cycle. Additionally, p37 serves as the first nucleocytoplasmic shuttle protein encoded by ASFV, participating in the intranuclear material transport process during ASFV infection of host cells. In this study, we successfully screened five murine monoclonal antibodies targeting p37. Through the truncated expression method, we identified four dominant antigenic epitopes of p37 for the first time. Furthermore, utilizing alanine scanning technology, we determined the key amino acid residues for each epitope. This research not only provides essential information for a deeper understanding of the protein's function but also establishes a significant theoretical foundation for the design and development of ASFV vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Camundongos , Anticorpos Monoclonais , Proteínas Virais/química , Febre Suína Africana/prevenção & controle
20.
Food Chem ; 457: 139648, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908249

RESUMO

Florfenicol (F), an antimicrobial agent exclusive to veterinary use within the chloramphenicol class, is extensively applied as a broad-spectrum remedy for animal diseases. Despite its efficacy, concerns arise over potential deleterious residues in animal-derived edibles, posing threats to human health. This study pioneers an innovative approach, introducing a quantum dot fluorescence-based immunoassay (FLISA) for the meticulous detection of F residues in animal-derived foods and feeds. This method demonstrates heightened sensitivity, with a detection limit of 0.3 ng/mL and a quantitative detection range of 0.6-30.4 ng/mL. Method validation, applied to diverse food sources, yields recoveries from 90.4 % to 109.7 %, featuring RSDs within 1.3 % to 8.7 %, the results showed high consistency with the national standard HPLC-MS/MS detection method. These findings underscore the method's accuracy and precision, positioning it as a promising tool for swift and reliable F residue detection, with substantial implications for fortifying food safety monitoring.


Assuntos
Antibacterianos , Contaminação de Alimentos , Pontos Quânticos , Tianfenicol , Pontos Quânticos/química , Tianfenicol/análise , Tianfenicol/análogos & derivados , Contaminação de Alimentos/análise , Animais , Antibacterianos/análise , Imunoensaio/métodos , Sulfetos/análise , Sulfetos/química , Compostos de Zinco/química , Resíduos de Drogas/análise , Anticorpos/química , Ração Animal/análise , Limite de Detecção , Compostos de Cádmio/química , Fluorescência , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA