Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 43(8): 3133-3149, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33523329

RESUMO

Kashin-Beck disease (KBD) is an endemic disease in China with the highest incidence rate in Tibet region. Promoted generation of oxygen free radicals by semiquinone structure of humic substance (HS) in drinking water was considered to be one of its pathogeneses. Therefore, detailed analysis of HS was performed in water and sediment samples collected from three endemic and three disease-free areas in Changdu Region, Tibet, China. After purification of the HS in the samples, the fractions of HS were characterized using electron paramagnetic resonance, 13C nuclear magnetic resonance, fluorescence spectroscopy with parallel factor analysis and Fourier transform infrared spectroscopy (FTIR). The organic carbon content of HS did not show a significant difference between endemic and disease-free areas or correlation with KBD-associated morbidity. Except FTIR, all techniques succeeded in characterization of the quinone redox system, indicating their validity and consistency. The quinone redox system in aquatic HS exhibited significantly higher level of the following indexes in endemic areas than disease-free areas: semiquinone radical content of fulvic acid (FA) (p < 0.05), aromaticity of FA (p < 0.05), fluorescence intensity (per gram carbon) of reduced quinone-like component of FA (p < 0.05) and humic acid (HA) (p < 0.1). Semiquinone radical content (r = 0.781, p < 0.1), aromaticity of FA (r = 0.891, p < 0.05), intensity of oxidized quinone-like component (r = 0.875, p < 0.05) and reduced quinone-like component of FA (r = 0.793 p < 0.1) showed medium to strong correlation with KBD-associated morbidity. Generally, the content of reduced quinone and aquatic FA showed stronger differences between endemic and disease-free areas than oxidized quinone and aquatic HA, respectively. The quinone redox system in sediment HS did not show any significant relationship with KBD. The present study is a successful attempt to combine the three indexes, semiquinone radical content, aromaticity and fluorescence intensity, in characterizing quinone redox system in HS, facilitating more comprehensive understanding of the characteristics of HS in KBD-affected regions.


Assuntos
Doença de Kashin-Bek , Humanos , Substâncias Húmicas/análise , Doença de Kashin-Bek/epidemiologia , Oxirredução , Quinonas , Tibet
2.
J Environ Sci (China) ; 73: 185-194, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30290867

RESUMO

The use of biochars formed by hydrothermal carbonization for the treatment of contaminated water has been greatly limited, due to their poorly developed porosity and low content of surface functional groups. Also, the most common modification routes inevitably require post-treatment processes, which are time-consuming and energy-wasting. Hence, the objective of this research was to produce a cost-effective biochar with improved performance for the treatment of heavy metal pollution through a facile one-step hydrothermal carbonization process coupled with ammonium phosphate, thiocarbamide, ammonium chloride or urea, without any post-treatment. The effects of various operational parameters, including type of modification reagent, time and temperature of hydrothermal treatment, and ratio of modification reagent to precursor during impregnation, on the copper ion adsorption were examined. The adsorption data fit the Langmuir adsorption isotherm model quite well. The maximum adsorption capacities (mg/g) of the biochars towards copper ions followed the order of 40-8h-1.0-APBC (95.24)>140-8h-0-BC (12.52)>140-8h-1.0-TUBC (12.08)>140-8h-1.0-ACBC (7.440)>140-8h-1.0-URBC (5.277). The results indicated that biochars modified with ammonium phosphate displayed excellent adsorption performance toward copper ions, which was 7.6-fold higher than that of the pristine biochar. EDX and FT-IR analyses before and after adsorption demonstrated that the main removal mechanism involved complexation between the phosphate groups on the surface of the modified biochars and copper ions.


Assuntos
Carvão Vegetal/química , Cobre/química , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Cobre/análise , Poluentes Químicos da Água/análise
3.
Ecotoxicol Environ Saf ; 145: 289-294, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28755646

RESUMO

Potassium tartrate (C4H6K2O7) was utilized as a novel activating agent to prepare activated carbon with relatively high specific surface area by using less activating agent and activation time from marine waste-green alga (Enteromorpha prolifera) for the first time. The influences of activation temperature, impregnation ratio and activation time on the pore structure were investigated to obtain the optimum conditions (activation temperature: 700°C, impregnation ratio: 1:1, and activation time: 30min). Meanwhile, the activation temperature was evaluated to be the essential factor that dominated the form of pore structure in activated carbon. The green alga-based activated carbon that was prepared under optimum conditions has shown the high surface area of 1692m2/g and total pore volume of 1.22cm3/g, which could be used as an effective adsorbent to remove chloramphenicol. The thermodynamic data of chloramphenicol were well fitted by Langmuir isotherm model and the green alga-based activated carbon has showed high adsorption capacity of 709.2mg/g towards chloramphenicol.


Assuntos
Carvão Vegetal/química , Cloranfenicol/química , Clorófitas/química , Tartaratos/química , Poluentes Químicos da Água/química , Adsorção , Cloranfenicol/análise , Propriedades de Superfície , Temperatura , Eliminação de Resíduos Líquidos , Gerenciamento de Resíduos , Águas Residuárias/química , Poluentes Químicos da Água/análise
4.
Electrophoresis ; 36(13): 1507-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25363511

RESUMO

Electrophoresis and dielectrophoresis of cells can reveal many distinct cellular properties but are often conducted separately. Herein a simultaneous strategy was proposed, and a simple method was established by making cells migrate through a cross channel under a micro video for real-time observation. The experiment can be performed within 0.044-1 s. In combination with digital calculation based on electromagnetic theory, the method was validated to be applicable to the determination of electrophoretic and dielectrophoretic mobilities, µEP and µDEP , of human blood erythrocytes, giving µEP = -(0.87 ± 0.16)× 10(-4) cm(2) ·V(-1) · s(-1) and µDEP = -(4.5 ± 1.3) × 10(-8) cm(4) ·V(-2) ·s(-1) by vector decomposition, or µEP = -(0.89 ± 0.14) × 10(-4) cm(2) ·V(-1) · s(-1) and µDEP = -(4.6 ±1.2) × 10(-8) cm(4) ·V(-2) · s(-1) by least squares fitting, all agreeing with published data. Hydrodynamic and EOFs were eliminated for better measurement. It was found that the location of cells had a serious impact on the measurement precision, and the upstream of the cross channel along the electric field was chosen for precise measurement. The method is also extendable to the study of other cells and particles.


Assuntos
Simulação por Computador , Eletroforese/métodos , Eritrócitos/citologia , Eritrócitos/fisiologia , Humanos , Reprodutibilidade dos Testes
5.
Chin Med ; 10: 20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26213566

RESUMO

BACKGROUND: Anemone flaccida Fr . Schmidt (Ranunculaceae) (Di Wu in Chinese) is used to treat punch injury and rheumatoid arthritis (RA). However, the active compounds and underlying mechanism of action mediating the anti-arthritic effects of A. flaccida remain unclear. This study aims to evaluate the underlying action mechanism of A. flaccida crude triterpenoid saponins (AFS) on RA using a type II collagen (CII)-induced arthritis (CIA) rat model, and to assess the anti-inflammatory effects of the main active compounds of AFS, namely flaccidoside II, anhuienoside E, glycoside St-I4a, hemsgiganoside B, hederasaponin B, and 3-O-α-l-rhamnopyranosyl (1 â†’ 2)-ß-d-glucopyranosyl oleanolic acid 28-O-ß-d-glucopyranosyl (1 â†’ 6)-ß-d-glucopyranosyl ester. METHODS: Male Wistar rats (n = 50) were randomly separated into five groups (n = 10) and immunized by CII injection. AFS (200 or 400 mg/kg) and dexamethasone were orally administered for 30 days after establishing the model. The arthritis severity was assessed by paw volume using a plethysmometer. After 30 days of treatment, the right hind paws of the rats were obtained. Paw histology was analyzed by hematoxylin and eosin staining, and radiologic imaging was performed by micro-computed tomography. MTT assays were used to evaluate the cytotoxicity of AFS and its main compounds in RAW264.7 cells. Enzyme-linked immunosorbent assay kits were used to measure interleukin (IL)-6 and tumor necrosis factor (TNF)-α in serum and supernatants from AFS- and main AFS compound-treated RAW264.7 cells stimulated by lipopolysaccharide (LPS). RESULTS: Anemone flaccida crude triterpenoid saponins inhibited redness and swelling of the right hind paw in the CIA model. Radiological and histological examinations indicated that inflammatory responses were reduced by AFS treatment. Moreover, comparing with untreated rats, serum TNF-α (P = 0.0035 and P < 0.001) and IL-6 (P = 0.0058 and P = 0.0087) were lower in AFS-treated CIA rats at the dose of 200 and 400 mg/kg/day. AFS and its main compounds, including hederasaponin B, flaccidoside II, and hemsgiganoside B, significantly inhibited TNF-α (P = 0.0022, P = 0.013, P = 0.0015, and P = 0.016) and IL-6 (P = 0.0175, P < 0.001, P < 0.001, and P < 0.001) production in LPS-treated RAW264.7 cells, respectively. CONCLUSIONS: Anemone flaccida crude triterpenoid saponins and its main bioactive components, including hederasaponin B, flaccidoside II, and hemsgiganoside B, decreased pro-inflammatory cytokine levels in a CIA rat model and LPS-induced RAW264.7 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA