Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255880

RESUMO

Auxin Response Factors (ARFs) mediate auxin signaling and govern diverse biological processes. However, a comprehensive analysis of the ARF gene family and identification of their key regulatory functions have not been conducted in Melastoma dodecandrum, leading to a weak understanding of further use and development for this functional shrub. In this study, we successfully identified a total of 27 members of the ARF gene family in M. dodecandrum and classified them into Class I-III. Class II-III showed more significant gene duplication than Class I, especially for MedARF16s. According to the prediction of cis-regulatory elements, the AP2/ERF, BHLH, and bZIP transcription factor families may serve as regulatory factors controlling the transcriptional pre-initiation expression of MedARF. Analysis of miRNA editing sites reveals that miR160 may play a regulatory role in the post-transcriptional expression of MeARF. Expression profiles revealed that more than half of the MedARFs exhibited high expression levels in the stem compared to other organs. While there are some specific genes expressed only in flowers, it is noteworthy that MedARF16s, MedARF7A, and MedARF9B, which are highly expressed in stems, also demonstrate high expressions in other organs of M. dodecandrum. Further hormone treatment experiments revealed that these MedARFs were sensitive to auxin changes, with MedARF6C and MedARF7A showing significant and rapid changes in expression upon increasing exogenous auxin. In brief, our findings suggest a crucial role in regulating plant growth and development in M. dodecandrum by responding to changes in auxin. These results can provide a theoretical basis for future molecular breeding in Myrtaceae.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Melastomataceae , Embaralhamento de DNA , Flores , Duplicação Gênica , Ácidos Indolacéticos/farmacologia
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256078

RESUMO

Heat shock factors (HSFs) are the key regulators of heat stress responses and play pivotal roles in tissue development and the temperature-induced regulation of secondary metabolites. In order to elucidate the roles of HSFs in Cymbidium ensifolium, we conducted a genome-wide identification of CeHSF genes and predicted their functions based on their structural features and splicing patterns. Our results revealed 22 HSF family members, with each gene containing more than one intron. According to phylogenetic analysis, 59.1% of HSFs were grouped into the A subfamily, while subfamily HSFC contained only two HSFs. And the HSF gene families were differentiated evolutionarily between plant species. Two tandem repeats were found on Chr02, and two segmental duplication pairs were observed on Chr12, Chr17, and Chr19; this provided evidence for whole-genome duplication (WGD) events in C. ensifolium. The core region of the promoter in most CeHSF genes contained cis-acting elements such as AP2/ERF and bHLH, which were associated with plant growth, development, and stress responses. Except for CeHSF11, 14, and 19, each of the remaining CeHSFs contained at least one miRNA binding site. This included binding sites for miR156, miR393, and miR319, which were responsive to temperature and other stresses. The HSF gene family exhibited significant tissue specificity in both vegetative and floral organs of C. ensifolium. CeHSF13 and CeHSF15 showed relatively significant expression in flowers compared to other genes. During flower development, CeHSF15 exhibited markedly elevated expression in the early stages of flower opening, implicating critical regulatory functions in organ development and floral scent-related regulations. During the poikilothermic treatment, CeHSF14 was upregulated over 200-fold after 6 h of heat treatment. CeHSF13 and CeHSF14 showed the highest expression at 6 h of low temperature, while the expression of CeHSF15 and CeHSF21 continuously decreased at a low temperature. The expression patterns of CeHSFs further confirmed their role in responding to temperature stress. Our study may help reveal the important roles of HSFs in plant development and metabolic regulation and show insight for the further molecular design breeding of C. ensifolium.


Assuntos
Temperatura Baixa , Resposta ao Choque Térmico , Temperatura , Filogenia , Resposta ao Choque Térmico/genética , Sítios de Ligação
3.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139178

RESUMO

Though conserved in higher plants, the WOX transcription factors play crucial roles in plant growth and development of Melastoma dodecandrum Lour., which shows pioneer position in land ecosystem formation and produces nutritional fruits. Identifying the WOX family genes in M. dodecandrum is imperative for elucidating its growth and development mechanisms. However, the WOX genes in M. dodecandrum have not yet been characterized. In this study, by identification 22 WOX genes in M. dodecandrum based on current genome data, we classified family genes into three clades and nine types with homeodomains. We highlighted gene duplications of MedWOX4, which offered evidences of whole-genome duplication events. Promoter analysis illustrated that cis-regulatory elements related to light and stress responses and plant growth were enriched. Expression pattern and RT-qPCR results demonstrated that the majority of WOX genes exhibited expression in the stem. MedWOX13s displayed highest expression across various tissues. MedWOX4s displayed a specific expression in the stem. Collectively, our study provided foundations for elucidating WOX gene functions and further molecular design breeding in M. dodecandrum.


Assuntos
Ecossistema , Família Multigênica , Duplicação Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Mar Pollut Bull ; 200: 116077, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330811

RESUMO

Nitrite and microplastics (MPs) are environmental pollutants that threaten intestinal integrity and affect immune function of shrimp. In this study, the shrimp Litopenaeus vannamei were exposed to the individual and combined stress of nitrite and microplastics for 14 days, and the changes of intestinal histology and physiological functions were investigated. After single and combined stress, affectations occurred in intestinal tissue; the antioxidant enzyme activities (MDA, H2O2, CAT increased) and gene expression levels (CAT, SOD, GPx, HSP70 up-regulated) changed. The expression levels of detoxification genes (CYP450, UGT down-regulated, GST up-regulated), apoptosis genes (CASP-3 up-regulated) and endoplasmic reticulum stress genes (Bip, GRP94 down-regulated) changed. Furthermore, the stress also increased intestinal microbial diversity, causing bacterial composition variation, especially beneficial bacteria and pathogenic bacteria. These results suggested that nitrite and microplastics stress had adverse effects on the intestinal health of L. vannamei by affecting intestinal tissue morphology, immune response and microbial community.


Assuntos
Microbiota , Penaeidae , Animais , Nitritos , Microplásticos , Plásticos/farmacologia , Peróxido de Hidrogênio , Antioxidantes/metabolismo , Bactérias/metabolismo , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA