Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(32): 22258-67, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24951588

RESUMO

Exosomes are nanoscale membrane vesicles secreted from many types of cells. Carrying functional molecules, exosomes transfer information between cells and mediate many physiological and pathological processes. In this report, utilizing selective inhibitors, molecular tools, and specific endocytosis markers, the cellular uptake of PC12 cell-derived exosomes was imaged by high-throughput microscopy and statistically analyzed. It was found that the uptake was through clathrin-mediated endocytosis and macropinocytosis. Furthermore, PC12 cell-derived exosomes can enter and deliver microRNAs (miRNAs) into bone marrow-derived mesenchymal stromal cells (BMSCs), and decrease the expression level of transforming growth factor ß receptor II (TGFßRII) and tropomyosin-1 (TPM1) through miR-21. These results show the pathway of exosome internalization and demonstrate that tumor cell-derived exosomes regulate target gene expression in normal cells.


Assuntos
Cadeias Pesadas de Clatrina/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Transporte Biológico Ativo , Cavéolas/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Dinamina II/antagonistas & inibidores , Dinamina II/genética , Dinamina II/metabolismo , Endocitose , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Mesenquimais/metabolismo , Células PC12 , Fagocitose , Pinocitose , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
2.
J Cell Physiol ; 228(7): 1487-95, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23254476

RESUMO

Cells release exosomes into extracellular medium. Although the important roles of exosomes in many physiological and pathological processes are being revealed, the mechanism of exosome-cell interaction remains unclear. In this article, employing real-time fluorescence microscopy, the motion of exosomes on the plasma membrane or in the cytoplasm of recipient PC12 cells was observed directly. In addition, several motion modes of exosomes were revealed by single particle tracking (SPT). The changes between motion modes were also detected, presenting the dynamic courses of exosome attachment onto plasma membrane and exosome uptake. Octadecyl rhodamine B chloride (R18) was found to be useful to distinguish endocytosis from fusion during exosome uptake. Colocalization with organelle markers showed exosomes were sorted to acidic vesicles after internalization. The results provide new sight into the exosome-cell interaction mode and the intercellular trafficking of exosomes. This study will help to understand the roles of exosomes at cell level.


Assuntos
Exossomos/fisiologia , Animais , Transporte Biológico Ativo , Sistemas Computacionais , Endocitose , Corantes Fluorescentes , Lisossomos/fisiologia , Microscopia de Fluorescência , Modelos Biológicos , Movimento/fisiologia , Células PC12 , Ratos , Rodaminas
3.
Biomaterials ; 150: 137-149, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29040874

RESUMO

The safe and effective delivery of drugs is a major obstacle in the treatment of ischemic stroke. Exosomes hold great promise as an endogenous drug delivery nanosystem for the treatment of cerebral ischemia given their unique properties, including low immunogenicity, innate stability, high delivery efficiency, and ability to cross the blood-brain barrier (BBB). However, exosome insufficient targeting capability limits their clinical applications. In this study, the c(RGDyK) peptide has been conjugated to the exosome surface by an easy, rapid, and bio-orthogonal chemistry. In the transient middle cerebral artery occlusion (MCAO) mice model, The engineered c(RGDyK)-conjugated exosomes (cRGD-Exo) target the lesion region of the ischemic brain after intravenous administration. Furthermore, curcumin has been loaded onto the cRGD-Exo, and administration of these exosomes has resulted in a strong suppression of the inflammatory response and cellular apoptosis in the lesion region. The results suggest a targeting delivery vehicle for ischemic brain based on exosomes and provide a strategy for the rapid and large-scale production of functionalized exosomes.


Assuntos
Exossomos/química , Veículos Farmacêuticos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Curcumina/química , Modelos Animais de Doenças , Células HeLa , Humanos , Infarto da Artéria Cerebral Média , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/administração & dosagem , Peptídeos/química
4.
Nanoscale Res Lett ; 6: 447, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21749688

RESUMO

The biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI)- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy. The size of PLGA/PEI nanoparticles in phosphate-buffered saline (PBS) was about 60 nm at the optimal charge ratio. Without observable aggregation, the nanoparticles showed a better monodispersity. The PLGA-based nanoparticles were used as vector carrier for miRNA transfection in HepG2 cells. It exhibited a higher transfection efficiency and lower cytotoxicity in HepG2 cells compared to the PEI/DNA complex. The N/P ratio (ratio of the polymer nitrogen to the DNA phosphate) 6 of the PLGA/PEI/DNA nanocomplex displays the best property among various N/P proportions, yielding similar transfection efficiency when compared to Lipofectamine/DNA lipoplexes. Moreover, nanocomplex shows better serum compatibility than commercial liposome. PLGA nanocomplexes obviously accumulate in tumor cells after transfection, which indicate that the complexes contribute to cellular uptake of pDNA and pronouncedly enhance the treatment effect of miR-26a by inducing cell cycle arrest. Therefore, these results demonstrate that PLGA/PEI nanoparticles are promising non-viral vectors for gene delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA