Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 28(41): 14739-46, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22985346

RESUMO

We present electrochemical impedance spectroscopic (EIS) and two-chamber AFM investigations of the electrical and mechanical properties of solvent-containing nano-BLMs suspended on chip-based nanopores of diameter of 200, 400, and 700 nm. The chips containing nanoporous silicon nitride membranes are fabricated based on low-cost colloidal lithography with low aspect ratio of the nanopores. BLMs of DPhPC lipid molecules are constructed across the nanopores by the painting method. Two equivalent circuits are compared in view of their adequacy in description of the EIS performances of the nano-BLMs and more importantly the structures associated with the nano-BLMs systems. The BLM resistance and capacitance as well as their size and time dependence are studied by EIS. The breakthrough forces, elasticity in terms of apparent spring constant, and lateral tension of the solvent-containing nano-BLMs are investigated by AFM force measurements. The exact relationship of the breakthrough force of the nano-BLM as a function of pore size is revealed. Both EIS and AFM studies show increasing lifetime and mechanical stability of the nano-BLMs with decreasing pore size. Finally, the robust 200 nm diameter nanopores are used to accommodate functional BLMs containing DPhPC lipid molecules and gramicidins by using a painting method with drop of mixture solutions of DPhPC and gramicidins. EIS investigation of the functional nano-BLMs is also performed.


Assuntos
Elétrons , Bicamadas Lipídicas/química , Nanoestruturas/química , Espectroscopia Dielétrica , Microscopia de Força Atômica , Tamanho da Partícula , Compostos de Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA