Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2014: 459025, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24790569

RESUMO

The mechanical behavior of multicracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, experimental and numerical studies on the fracture property of three collinear cracks under compression were implemented. The specimens were a square concrete plate, and the cracks were made by a very thin film. The tests were conducted by using true triaxial loading device. In the numerical study, the Abaqus code was employed. The effect of crack orientation and the confining stress on cracked specimen compressive strength were investigated. The results show that the critical stresses of cracked specimens change with crack inclination angles, and, as the angle is 45°, the critical stress is the lowest; the critical stresses increase with the confining stresses.


Assuntos
Força Compressiva , Materiais de Construção/análise , Modelos Teóricos
2.
ScientificWorldJournal ; 2014: 192978, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013846

RESUMO

In order to investigate the properties of Y-shaped cracks of brittle materials under compression, compression tests by using square cement mortar specimens with Y-shaped crack were conducted. A true triaxial loading device was applied in the tests, and the major principle stresses or the critical stresses were measured. The results show that as the branch angle θ between the branch crack and the stem crack is 75°, the cracked specimen has the lowest strength. In order to explain the test results, numerical models of Y-shaped cracks by using ABAQUS code were established, and the J-integral method was applied in calculating crack tip stress intensity factor (SIF). The results show that when the branch angle θ increases, the SIF K I of the branch crack increases from negative to positive and the absolute value K II of the branch crack first increases, and as θ is 50°, it is the maximum, and then it decreases. Finally, in order to further investigate the stress distribution around Y-shaped cracks, photoelastic tests were conducted, and the test results generally agree with the compressive test results.


Assuntos
Força Compressiva , Modelos Teóricos , Estresse Mecânico
3.
Materials (Basel) ; 16(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834686

RESUMO

The mechanical properties of shale are generally influenced by in situ geological conditions. However, the understanding of the effects of in situ geological conditions on the mechanical properties of shale is still immature. To address this problem, this paper provides insight into the elasticity and characteristic stress thresholds (i.e., the crack closure stress σcc, crack initiation stress σci, and crack damage stress σcd) of shales with differently oriented bedding planes under deep in situ geological conditions. To accurately determine the elastic parameters and crack closure and initiation thresholds, a new method-i.e., the bidirectional iterative approximation (BIA) method-which iteratively approaches the upper and lower limit stresses of the linear elastic stress-strain regime, was proposed. Several triaxial compression experiments were performed on Longmaxi shale samples under coupled in situ stress and temperature conditions reflecting depths of 2000 and 4000 m in the study area. The results showed that the peak deviatoric stress (σp) of shale samples with the same bedding plane orientation increases as depth increases from 2000 m to 4000 m. In addition, the elastic modulus of the shale studied is more influenced by bedding plane orientation than by burial depth. However, the Poisson's ratios of the studied shale samples are very similar, indicating that for the studied depth conditions, the Poisson's ratio is not influenced by the geological conditions and bedding plane orientation. For the shale samples with the two typical bedding plane orientations tested (i.e., perpendicular and parallel to the axial loading direction) under 2000 and 4000 m geological conditions, the ratio of crack closure stress to peak deviatoric stress (σcc/σp) ranges from 24.83% to 25.16%, and the ratio of crack initiation stress to peak deviatoric stress (σci/σp) ranges from 34.78% to 38.23%, indicating that the σcc/σp and σci/σp ratios do not change much, and are less affected by the bedding plane orientation and depth conditions studied. Furthermore, as the in situ depth increases from 2000 m to 4000 m, the increase in σcd is significantly greater than that of σcc and σci, indicating that σcd is more sensitive to changes in depth, and that the increase in depth has an obvious inhibitory effect on crack extension. The expected experimental results will provide the background for further constitutive modeling and numerical analysis of the shale gas reservoirs.

4.
Materials (Basel) ; 16(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903034

RESUMO

Dolomitic limestone is the main surrounding rock material in Yangzong tunnel engineering; the instantaneous mechanical properties and creep behaviors of limestone are significant for stability evaluation during the stages of tunnel excavation and long-term maintenance. Herein, four conventional triaxial compression tests were carried out to explore its instantaneous mechanical behavior and failure characteristics; subsequently, the creep behaviors of limestone subjected to multi-stage incremental axial loading at the confinements of 9 MPa and 15 MPa were studied by employing an advanced rock mechanics testing system (i.e., MTS815.04). The results reveal the following. (1) comparing the curves of axial strain-, radial strain-, and volumetric strain-stress under different confining pressures shows that these curves present a similar trend, whereas the stress drops during the post-peak stage decelerate with the increase in confining pressure, suggesting that the rock transits from brittleness to ductility. The confining pressure also has a certain role in controlling the cracking deformation during the pre-peak stage. Besides, the proportions of compaction- and dilatancy-dominated phases in the volumetric strain-stress curves differ obviously. Moreover, the failure mode of the dolomitic limestone is a shear-dominated fracture but is also affected by the confining pressure. (2) When the loading stress reaches a creep threshold stress, the primary and steady-state creep stages occur successively, and a higher deviatoric stress corresponds to a greater creep strain. When the deviatoric stress surpasses an accelerated creep threshold stress, a tertiary creep appears and then is followed by creep failure. Furthermore, the two threshold stresses at 15 MPa confinement are greater than that at 9 MPa confinement, suggesting that the confining pressure has an obvious impact on the threshold values and a higher confining pressure corresponds to a greater threshold value. Additionally, the specimen's creep failure mode is one of "abrupt" shear-dominated fracturing and is similar to that under a conventional triaxial compression test at high confining pressure. (3) A multi-element nonlinear creep damage model is developed by bonding a proposed visco-plastic model in series with the Hookean substance and Schiffman body, and can accurately describe the full-stage creep behaviors.

5.
mBio ; 13(4): e0173822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862790

RESUMO

In humans, HIV-1 infection induces innate immune responses mediated mainly by type I interferon (IFN). Type I IFN restricts HIV-1 replication by upregulating the expression of IFN-stimulated genes with diverse anti-HIV properties. In this study, we report that the cell membrane protein otoferlin (OTOF) acts as a type I IFN-induced effector, inhibiting HIV-1 entry in myeloid lineage macrophages and dendritic cells (DCs). OTOF is significantly induced by type I IFN in macrophages and DCs but not in CD4+ T lymphocytes. Silencing OTOF abrogates the IFN-mediated suppression of HIV-1 infection in macrophages and DCs. Moreover, OTOF overexpression exhibits anti-HIV activity in macrophages and CD4+ T cells. Further evidence reveals that OTOF inhibits HIV-1 entry into target cells at the cell membrane. Collectively, OTOF is a downstream molecule induced by type I IFN to inhibit HIV-1 entry in macrophages; it is a new potential agent for the treatment of HIV infection. IMPORTANCE In patients with HIV-1 infection, the virus is recognized by innate immune sensors that trigger the production of type I interferons (IFNs), which are well-known cytokines that exert broad antiviral effects by inducing the expression of antiviral genes. By comparing the gene expression profiles of untreated patients and healthy donors, we systematically identified OTOF as a new antiviral gene induced by IFN-α in primary macrophages and dendritic cells (DCs). Additionally, silencing OTOF alleviates IFN-α-induced resistance to HIV-1 infection in both myeloid cell lineage macrophages and DCs. In contrast, OTOF overexpression potently restricts HIV-1 transmission in macrophages. We further explored the molecular mechanism through which OTOF inhibits the HIV-1 virion across the cell membrane. Overall, OTOF is a newly identified type I IFN-induced antiviral factor that inhibits the transmembrane activity of HIV-1 in myeloid cells.


Assuntos
Infecções por HIV , HIV-1 , Interferon Tipo I , Antivirais/farmacologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Interferon Tipo I/metabolismo , Interferon-alfa/metabolismo , Macrófagos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Replicação Viral
6.
Curr HIV Res ; 16(6): 384-395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30774045

RESUMO

BACKGROUND: Understanding of the restriction of HIV-1 transcription in resting CD4+ Tcells is critical to find a cure for AIDS. Although many negative factors causing HIV-1 transcription blockage in resting CD4+ T-cells have been found, there are still unknown mechanisms to explore. OBJECTIVE: To explore the mechanism for the suppression of de novo HIV-1 transcription in resting CD4+ T-cells. METHODS: In this study, a short isoform of Per-1 expression plasmid was transfected into 293T cells with or without Tat's presence to identify Per-1 as a negative regulator for HIV-1 transcription. Silencing of Per-1 was conducted in resting CD4+ T-cells or monocyte-derived macrophages (MDMs) to evaluate the antiviral activity of Per-1. Additionally, we analyzed the correlation between Per-1 expression and viral loads in vivo, and silenced Per-1 by siRNA technology to investigate the potential anti-HIV-1 roles of Per-1 in vivo in untreated HIV-1-infected individuals. RESULTS: We found that short isoform Per-1 can restrict HIV-1 replication and Tat ameliorates this inhibitory effect. Silencing of Per-1 could upregulate HIV-1 transcription both in resting CD4+ Tcells and MDMs. Moreover, Per-1 expression is inversely correlated with viral loads in Rapid progressors (RPs) in vivo. CONCLUSION: These data together suggest that Per-1 is a novel negative regulator of HIV-1 transcription. This restrictive activity of Per-1 to HIV-1 replication may contribute to HIV-1 latency in resting CD4+ T-cells.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/imunologia , Interações Hospedeiro-Patógeno , Fatores Imunológicos/metabolismo , Proteínas Circadianas Period/metabolismo , Transcrição Gênica , Linhagem Celular , Inativação Gênica , HIV-1/crescimento & desenvolvimento , Humanos , Fatores Imunológicos/genética , Monócitos/virologia , Proteínas Circadianas Period/genética , Carga Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA