Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 1): 159390, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36243072

RESUMO

Annual gross primary productivity (AGPP) is the basis for grain production and terrestrial carbon sequestration. Mapping regional AGPP from site measurements provides methodological support for analysing AGPP spatiotemporal variations thereby ensures regional food security and mitigates climate change. Based on 641 site-year eddy covariance measuring AGPP from China, we built an AGPP mapping scheme based on its formation and selected the optimal mapping way, which was conducted through analysing the predicting performances of divergent mapping tools, variable combinations, and mapping approaches in predicting observed AGPP variations. The reasonability of the selected optimal scheme was confirmed by assessing the consistency between its generating AGPP and previous products in spatiotemporal variations and total amount. Random forest regression tree explained 85 % of observed AGPP variations, outperforming other machine learning algorithms and classical statistical methods. Variable combinations containing climate, soil, and biological factors showed superior performance to other variable combinations. Mapping AGPP through predicting AGPP per leaf area (PAGPP) explained 86 % of AGPP variations, which was superior to other approaches. The optimal scheme was thus using a random forest regression tree, combining climate, soil, and biological variables, and predicting PAGPP. The optimal scheme generating AGPP of Chinese terrestrial ecosystems decreased from southeast to northwest, which was highly consistent with previous products. The interannual trend and interannual variation of our generating AGPP showed a decreasing trend from east to west and from southeast to northwest, respectively, which was consistent with data-oriented products. The mean total amount of generated AGPP was 7.03 ± 0.45 PgC yr-1 falling into the range of previous works. Considering the consistency between the generated AGPP and previous products, our optimal mapping way was suitable for mapping AGPP from site measurements. Our results provided a methodological support for mapping regional AGPP and other fluxes.


Assuntos
Mudança Climática , Ecossistema , Sequestro de Carbono , Solo , Aprendizado de Máquina , Carbono , Dióxido de Carbono/análise
2.
Environ Pollut ; 262: 114347, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32179231

RESUMO

Microplastics have attracted much attention in recent years as they can interact with pollutants in water environment. However, nanoplastics (NPs) with or without the surface functionalization modification have not been thoroughly explored. Here, the sorption behaviors of two fluoroquinolones (FQs), including norfloxacin (NOR) and levofloxacin (LEV) on polystyrene NPs (nano-PS) and carboxyl-functionalized polystyrene NPs (nano-PS-COOH) were investigated. The results showed that sorption isotherms were nonlinear and well fitted by Langmuir model. The sorption capacities of NOR and LEV on nano-PS-COOH were higher than those on nano-PS, and their physical interactions, including polar interaction, electrostatic interaction and hydrogen bonding may be the dominant mechanisms. Moreover, the increase of pH firstly increased the sorption of two FQs on NPs and then decreased because NOR and LEV had a reverse charge at different pH values. Salinity and dissolved organic matter both inhibited the sorption process. These findings show that NPs with or without the surface functionalization modification have different sorption behaviors for environmental pollutants, which deserve our further concern.


Assuntos
Plásticos , Poluentes Químicos da Água/análise , Adsorção , Fluoroquinolonas , Poliestirenos , Salinidade
3.
Huan Jing Ke Xue ; 40(5): 2086-2093, 2019 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087844

RESUMO

The water chemistry data monitored during 2010-2015 by 33 terrestrial ecological stations from the Chinese Ecosystem Research Network (CERN) and the National Ecosystem Research Network of China (CNERN) were used to characterize ion concentrations and their spatial variability in underground water, still surface water, and flowing surface water from typical terrestrial ecosystems. The results showed the presence of mass-based concentrations of major anions, including HCO3- > SO42- > Cl- > CO32-. Among them, HCO3- and SO42- were dominant, and their sums accounted for 71.7%, 75.3%, and 74.9% of the total anions in underground water, still surface water, and flowing surface water, respectively. Cations were mainly Ca2+ and Na+, and their sums accounted for 69.7%, 64.8%, and 68.9% of the total cations in underground water, still surface water, and flowing surface water, respectively. The ion concentration and ion ratio in the underground water, still surface water, and flowing surface water differed largely among the studied regions. The hydrochemical type varied regionally, e.g., Na-Mg-SO4-Cl type, usually with high content of salinity, was found in the underground water of ecological systems in the Northwest arid and semiarid areas and in the East Huanghuaihai Plain; Ca-SO4-HCO3 type in underground water and Ca-HCO3-SO4 type in surface water were found in hilly areas with subtropical red soil; Na-Ca-HCO3-Cl type was present in underground water of south hilly areas with subtropical latosolic red soil; and Ca-HCO3 and Ca-Mg-HCO3 types were found in other ecological systems. Hydrochemical types had low inter-annual variation for both underground water and surface water.

4.
Chemosphere ; 214: 688-694, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30292051

RESUMO

Microplastics have become a major concern in recent years as they can be recognized as the transport vectors for pollutants in environment. In this study, the sorption behavior of two phthalate esters (PAEs), including diethyl phthalate (DEP) and dibutyl phthalate (DBP), onto three types of microplastics (PVC: polyvinyl chloride, PE: polyethylene, and PS: polystyrene) was investigated. The sorption isotherms of both DEP and DBP on microplastics were highly linear, suggesting that the partition was the main sorption mechanism. The Kd values of DBP were much higher than those of DEP, demonstrating that hydrophobic interaction governed the partition mechanism. Sorption of the two PAEs on the three microplastics followed the order of PS > PE > PVC, indicating that chemical properties of microplastics played an important roles in their sorption behaviors. Solution pH and natural organic matter had no significant impact on PAEs sorption by microplastics. However, the presence of NaCl and CaCl2 enhanced the sorption of both DEP and DBP because of the salting-out effect. The findings of the present study may have significant implications for the fate and transport assessment of both PAEs and microplastics.


Assuntos
Dibutilftalato/química , Ácidos Ftálicos/química , Polietileno/química , Poliestirenos/química , Cloreto de Polivinila/química , Dibutilftalato/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ácidos Ftálicos/metabolismo , Polietileno/metabolismo , Poliestirenos/metabolismo , Cloreto de Polivinila/metabolismo
5.
Environ Pollut ; 246: 509-517, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30583159

RESUMO

Toxicity of single microplastics on organisms has been reported widely, however, their joint toxicity with other contaminants on phytoplankton is rarely investigated. Here, we studied the toxicity of triclosan (TCS) with four kinds of microplastics namely polyethylene (PE, 74 µm), polystyrene (PS, 74 µm), polyvinyl chloride (PVC, 74 µm), and PVC800 (1 µm) on microalgae Skeletonema costatum. Both growth inhibition and oxidative stress including superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. We found that TCS had obvious inhibition effect on microalgae growth within the test concentrations, and single microplastics also had significant inhibition effect which followed the order of PVC800 > PVC > PS > PE. However, the joint toxicity of PVC and PVC800 in combination with TCS decreased more than that of PE and PS. The higher adsorption capacity of TCS on PVC and PVC800 was one possible reason for the greater reduction of their toxicity. The joint toxicity of PVC800 was still most significant (PE < PVC < PS < PVC800) because of the minimum particle size. According to the independent action model, the joint toxicity systems were all antagonism. Moreover, the reduction of SOD was higher than MDA which revealed that the physical damage was more serious than intracellular damage. SEM images revealed that the aggregation of microplastics and physical damage on algae was obvious. Collectively, the present research provides evidences that the existence of organic pollutants is capable of influencing the effects of microplastics, and the further research on the joint toxicity of microplastics with different pollutants is urgent.


Assuntos
Diatomáceas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Fitoplâncton/efeitos dos fármacos , Plásticos/toxicidade , Polietileno/toxicidade , Poliestirenos/toxicidade , Cloreto de Polivinila/toxicidade , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Malondialdeído/análise , Microalgas/efeitos dos fármacos , Estresse Oxidativo , Tamanho da Partícula , Superóxido Dismutase/análise , Poluentes Químicos da Água/análise
6.
Environ Pollut ; 249: 1106-1114, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31146316

RESUMO

Graphene oxide (GO) has been demonstrated to be key component for diverse applications. However, their potential environmental reactivity, fate and risk have not been fully evaluated to date. In this study, we investigated the photochemical reactivity of four types of GO with different oxidation degrees in aqueous environment, and their related toxicity to two bacterial models Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was further compared. After UV-irradiation, a large amount of oxygen functional groups on GO were reduced and the electronic conjugations within GO were restored as indicated by UV-visible absorption spectra, X-ray photoelectron spectroscopy and Raman spectroscopy analysis. Moreover, the higher the oxidation degree of the pristine GO was, the more obvious of the photo-transformation changes were. In order to further reveal the photochemical reactivity mechanisms, the reactive oxygen species (ROS) generation of GO was monitored. The quantity of ROS including singlet oxygen (1O2), superoxide anions (O2·-), and hydroxyl radicals (·OH) increased with increasing oxidation degree of GO, which was in accordance with the previous characterization results. Scanning electron microscopy and cell growth analyses of E. coli and S. aureus showed that the photochemical transformation enhanced the toxicity of GO, which might be due to an increase in functional group density. The higher conductivity of the reduced graphene oxide (RGO) was responsible for its stronger toxicity than GO through membrane damage and oxidative stress to bacteria. This study revealed that the oxidation degrees play important roles in photochemical transformation and the resulting toxicity of GO, which is helpful for understanding the environmental behaviors and risks of GO in aquatic environments.


Assuntos
Escherichia coli/efeitos dos fármacos , Grafite/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Escherichia coli/crescimento & desenvolvimento , Grafite/efeitos da radiação , Oxirredução , Processos Fotoquímicos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Poluentes Químicos da Água/efeitos da radiação
7.
Ying Yong Sheng Tai Xue Bao ; 22(11): 2954-62, 2011 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-22303674

RESUMO

Based on the total radiation and photosynthetically active radiation (PAR) observations with net radiometer (CNR1) and quantum sensor (Li-190SB) in 4 ChinaFLUX forest sites (Changbaishan, Qianyanzhou, Dinghushan, and Xishuangbanna) in 2003-2008, this paper analyzed the uncertainties and the radiometers performance changes in long-term and continuous field observation. The results showed that the 98% accuracy of the total radiation measured with CNR1 (Q(cNR1)) could satisfy the technical criterion for the sites except Xishuangbanna where the Q(CNR1) was averagely about 7% lower than Q(CM11), the radiation measured with high accuracy pyranometer CM11. For most sites, though the temperature had definite effects on the performance of CNR1, the effects were still within the allowable range of the accuracy of the instrument. Besides temperature, the seasonal fog often occurred in tropical rain forests in Xishuangbanna also had effects on the performance of CNR1. Based on the long-term variations of PAR, especially its ratio to total radiation in the 4 sites, it was found that quantum sensor (Li-190SB) had obvious performance attenuation, with the mean annual attenuation rate being about 4%. To correct the observation error caused by Li-190SB, an attempt was made to give a post-correction of the PAR observations, which could basically eliminate the quantum sensor's performance attenuation due to long-term field measurement.


Assuntos
Ecossistema , Fotossíntese/fisiologia , Monitoramento de Radiação/métodos , Luz Solar , Árvores/crescimento & desenvolvimento , China , Radiação , Monitoramento de Radiação/instrumentação , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA