Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 193(4): 2442-2458, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590971

RESUMO

Volatile esters in apple (Malus domestica) fruit are the critical aroma components determining apple flavor quality. While the exact molecular regulatory mechanism remains unknown, jasmonic acid (JA) plays a crucial role in stimulating the synthesis of ester aromas in apples. In our study, we investigated the effects of methyl jasmonate (MeJA) on the production of ester aroma in apples. MeJA treatment significantly increased ester aroma synthesis, accompanied by the upregulation of several genes involved in the jasmonate pathway transduction. Specifically, expression of the gene MdMYC2, which encodes a transcription factor associated with the jasmonate pathway, and the R2R3-MYB transcription factor gene MdMYB85 increased upon MeJA treatment. Furthermore, the essential gene ALCOHOL ACYLTRANSFERASE 1 (MdAAT1), encoding an enzyme responsible for ester aroma synthesis, showed increased expression levels as well. Our investigation revealed that MdMYC2 and MdMYB85 directly interacted with the promoter region of MdAAT1, thereby enhancing its transcriptional activity. In addition, MdMYC2 and MdMYB85 directly bind their promoters and activate transcription. Notably, the interaction between MdMYC2 and MdMYB85 proteins further amplified the regulatory effect of MdMYB85 on MdMYC2 and MdAAT1, as well as that of MdMYC2 on MdMYB85 and MdAAT1. Collectively, our findings elucidate the role of the gene module consisting of MdMYC2, MdMYB85, and MdAAT1 in mediating the effects of JA and promoting ester aroma synthesis in apples.


Assuntos
Malus , Malus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Odorantes , Proteínas de Plantas/metabolismo , Ésteres/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Inorg Chem ; 62(6): 2760-2768, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36724472

RESUMO

A stable metal-organic framework with the formula {[Co(BBZB)(IPA)]·H2O}n (JXUST-23, BBZB = 4,7-bis(1H-benzimidazole-1-yl)-2,1,3-benzothiadiazole and H2IPA = isophthalic acid) was constructed by incorporating Co2+ ions and two conjugated ligands under solvothermal conditions. JXUST-23 takes a dinuclear cluster-based layer structure with a porosity of 2.7%. In this work, JXUST-23 was used to activate peroxymonosulfate (PMS) to degrade rhodamine B (RhB), a difficult-to-degrade pollutant in water. Compared with pure PMS or JXUST-23, the JXUST-23/PMS system displays the best degradation ability of RhB in neutral solution. When the mass ratio of JXUST-23 to PMS was 2:3, 99.72% of RhB (50 ppm) was removed within 60 min, and the reaction rate was 0.1 min-1. Furthermore, free radical quenching experiments show that SO4•- was the main free radical during the process of RhB degradation. In addition, JXUST-23 exhibits good reusability for the degradation of the organic dye RhB, making it a potential candidate for environmental remediation.

3.
Inorg Chem ; 62(9): 3799-3807, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808965

RESUMO

Two novel lanthanide metal-organic frameworks (MOFs) with the formulas [Tb(bidc)(Hbidc)(H2O)]n (JXUST-20) and {[Tb3(bidc)4(HCOO)(DMF)]·solvents}n (JXUST-21) were synthesized based on 2,1,3-benzothiadiazole-4,7-dicarboxylic acid (H2BTDC) under solvothermal conditions. Interestingly, benzimidazole-4,7-dicarboxylic acid (H2bidc) was formed in situ using H2BTDC as the starting material. The self-assembly process of the targeted MOFs with different topological structures can be controlled by the solvents and concentration of the reactants. Luminescence experiments show that JXUST-20 and JXUST-21 exhibit strong yellow-green emission. JXUST-20 and JXUST-21 can selectively sense benzaldehyde (BzH) via a luminescence quenching effect with detection limits of 15.3 and 1.44 ppm, respectively. In order to expand the practical application of MOF materials, mixed-matrix membranes (MMMs) have been constructed by mixing targeted MOFs and poly(methyl methacrylate) in a N,N-dimethylformamide (DMF) solution, which can also be used for BzH vapor sensing. Therefore, the first case of MMMs derived from TbIII MOFs has been developed for the reversible detection of BzH vapor, providing a simple and efficient platform for the future detection of volatile organic compounds.

4.
Inorg Chem ; 61(37): 14770-14777, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36070603

RESUMO

Due to their important role in biological systems, it is urgent to develop a material that can rapidly and sensitively detect the concentration of Fe3+ and Al3+ ions. In this work, a brand-new CdII-based metal-organic framework [Cd(BTBD)2(AIC)]n (JXUST-18, BTBD = 4,7-bis(1H-1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole and H2AIC = 5-aminoisophthalic acid) with a 4-connected sql topology was designed and synthesized. The symmetrical CdII centers are linked by AIC2- ligands with µ3-η1:η1:η1:η1 coordination mode to form a [Cd2(COO)2] secondary building unit (SBU). The contiguous SBUs are further connected by BTBD ligands to form a two-dimensional (2D) layer structure. JXUST-18 can remain stable in aqueous solutions with pH values of 3-12 or in boiling water. Luminescent experiments suggest that JXUST-18 displays more than eightfold fluorescence enhancement in the presence of Fe3+ and Al3+ ions, and the detection limits for Fe3+ and Al3+ ions are 0.196 and 0.184 µM, respectively. Furthermore, the change in luminescence color is uncomplicatedly distinguishable with the naked eye under ultraviolet light at 365 nm. In addition, a series of devices based on JXUST-18 including fluorescence test strips, lamp beads, and composite films were developed to detect metal ions via visual changes in luminescence color. Significantly, JXUST-18 is a rare MOF-based turn-on fluorescence sensor for the detection of Fe3+ ions. The theoretical calculation suggests that the complexation of Fe3+/Al3+ ions and the -NH2 group contributes to fluorescence enhancement.

5.
Angew Chem Int Ed Engl ; 61(49): e202214243, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36220784

RESUMO

Expensive gold-based catalysts are frequently used for electrochemical CO2 reduction into CO. A feasible approach to obtain low-cost Au-based catalysts is needed. Herein, a novel framework 1 assembled from [Zr48 Ni6 ] nano-cages is prepared. It exhibits a high BET surface area of 1569 m2 g-1 and high solvents/pH stability. 1 can not only selectively extract AuCl4 - from artificial electronic waste, but can then be transformed into low-cost catalyst Au nanoparticle@1-x (Au NPs@1-x, x=1, 2, 3, 4) with tuneable Au NPs sizes. The CO2 RR investigations revealed that the Au NPs@1-3 displayed an excellent FECO of 95.2 % with a current density of 102.9 mA cm-2 at -1.1 V, and such high catalytic activity can be maintained for at least 15 h without obvious decrease because the confinement effect of [Zr48 Ni6 ] nano-cages prevents Au NPs agglomeration. This work offers a facile strategy to obtain low-cost and high-performance Au-based catalysts for various reactions activated by Au.

6.
Angew Chem Int Ed Engl ; 60(43): 23394-23402, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406687

RESUMO

Electrocatalytic reduction of CO2 by metal-organic frameworks (MOFs) has been widely investigated, but insufficient conductivity limits application. Herein, a porous 3D In-MOF {(Me2 NH2 )[In(BCP)]⋅2 DMF}n (V11) with good stability was constructed with two types of channels (1.6 and 1.2 nm diameter). V11 exhibits moderate catalytic activity in CO2 electroreduction with 76.0 % of Faradaic efficiency for formate (FEHCOO- ). Methylene blue molecules of suitable size and pyrolysis temperature were introduced and transformed into carbon particles (CPs) after calcination. The performance of the obtained CPs@V11 is significantly improved both in FEHCOO- (from 76.0 % to 90.1 %) and current density (2.2 times). Control experiments show that introduced CPs serve as accelerant to promote the charges and mass transfer in framework, and benefit to sufficiently expose active sites. This strategy can also work on other In-MOFs, demonstrating the universality of this method for electroreduction of CO2 .

7.
Dalton Trans ; 52(13): 4167-4175, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892084

RESUMO

A novel three-dimensional Eu3+-based metal-organic framework with the formula {[(CH3)2NH2][Eu(BTDI)]·H2O·DMF}n (JXUST-25) was prepared by solvothermal method based on Eu3+ and 5,5'-(benzothiadiazole-4,7-diyl)diisophthalic acid (H4BTDI) with benzothiadiazole (BTD) luminescent groups. Due to the presence of Eu3+ and organic fluorescence ligand, JXUST-25 displays turn-on and blue-shift fluorescence toward Cr3+, Al3+ and Ga3+ with limits of detection (LOD) of 0.073, 0.006 and 0.030 ppm, respectively. Interestingly, the alkaline environment can change the fluorescence of JXUST-25 toward Cr3+/Al3+/Ga3+ and the addition of HCl solution realizes the reversible change of the fluorescence of JXUST-25 toward Cr3+/Al3+/Ga3+. It is noteworthy that the fluorescent test paper and light-emitting diode lamp based on JXUST-25 can effectively detect Cr3+, Al3+ and Ga3+ by the visual changes. In addition, the turn-on and blue-shift fluorescence between JXUST-25 and M3+ ions may be caused by the host-guest interaction and the absorbance caused enhancement mechanism.

8.
Dalton Trans ; 52(30): 10567-10573, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458678

RESUMO

The development of a rapid and selective method for the identification of dipicolinic acid (DPA), a specific biomarker in Bacillus anthracis spores, is of great importance for the avoidance of anthrax infection. Herein, a chain-based EuIII metal-organic framework with the formula {[Eu3(BTDB)3(µ3-OH)3(H2O)]·solvents}n (JXUST-38, H2BTDB = (benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid) was obtained using 2-fluorobenzoic acid as the pH regulator. JXUST-38 exhibits good chemical and thermal stability and can specifically recognize DPA in N,N-dimethylformamide solution through luminescence enhancement and blue-shift effects with a detection limit of 0.05 µM. Furthermore, the significant luminescence enhancement and blue shift under UV lamps are obviously observable by the naked eye. The luminescence sensing mechanism is attributed to absorbance-induced enhancement between JXUST-38 and DPA. Test paper and mixed-matrix membrane based on JXUST-38 are designed for DPA detection. In addition, the feasibility of using JXUST-38 in biosensing is discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA