Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 729, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286721

RESUMO

BACKGROUND: Long noncoding RNAs (LncRNAs) play important roles in fundamental biological processes. However, knowledge about the genome-wide distribution and stress-related expression of lncRNAs in tilapia is still limited. RESULTS: Genome-wide identification of lncRNAs in the tilapia genome was carried out in this study using bioinformatics tools. 103 RNAseq datasets that generated in our laboratory or collected from NCBI database were analyzed. In total, 72,276 high-confidence lncRNAs were identified. The averaged positive correlation coefficient (r_mean = 0.286) between overlapped lncRNA and mRNA pairs showed significant differences with the values for all lncRNA-mRNA pairs (r_mean = 0.176, z statistics = - 2.45, p value = 0.00071) and mRNA-mRNA pairs (r_mean = 0.186, z statistics = - 2.23, p value = 0.0129). Weighted correlation network analysis of the lncRNA and mRNA datasets from 12 tissues identified 21 modules and many interesting mRNA genes that clustered with lncRNAs. Overrepresentation test indicated that these mRNAs enriched in many biological processes, such as meiosis (p = 0.00164), DNA replication (p = 0.00246), metabolic process (p = 0.000838) and in molecular function, e.g., helicase activity (p = 0.000102) and catalytic activity (p = 0.0000612). Differential expression (DE) analysis identified 99 stress-related lncRNA genes and 1955 tissue-specific DE lncRNA genes. MiRNA-lncRNA interaction analysis detected 72,267 lncRNAs containing motifs with sequence complementary to 458 miRNAs. CONCLUSIONS: This study provides an invaluable resource for further studies on molecular bases of lncRNAs in tilapia genomes. Further function analysis of the lncRNAs will help to elucidate their roles in regulating stress-related adaptation in tilapia.


Assuntos
Perfilação da Expressão Gênica , Genômica , RNA Longo não Codificante/genética , Tilápia/genética , Animais , Especificidade de Órgãos , RNA Mensageiro/genética , Estresse Fisiológico/genética , Tilápia/fisiologia
2.
Mar Biotechnol (NY) ; 25(1): 150-160, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445545

RESUMO

Fish suffer from starvation due to environmental risks such as extreme weather in the wild and due to insufficient feedings in farms. Nutrient problems from short-term or long-term starvation conditions can result in stress-related health problems for fish. Yellowfin seabream (Acanthopagrus latus) is an important marine economic fish in China. Understanding the molecular responses to starvation stress is vital for propagation and culturing yellowfin seabream. In this study, the transcriptome and genome-wide DNA methylation levels in the livers of yellowfin seabream under 14-days starvation stress were analyzed. One hundred sixty differentially expressed genes (DEGs) by RNA-Seq analysis and 737 differentially methylated-related genes by whole genome bisulfite sequencing analysis were identified. GO and KEGG pathway enrichment analysis found that energy metabolism-related pathways such as glucose metabolism and lipid metabolism were in response to starvation. Using bisulfite sequencing PCR, we confirmed the presence of CpG methylation differences within the regulatory region of a DEG ppargc1a in response to 14-days starvation stress. This study revealed the molecular responses of livers in response to starvation stress at the transcriptomic and whole genome DNA methylation levels in yellowfin seabream.


Assuntos
Perciformes , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Transcriptoma , Metilação de DNA , Fígado/metabolismo
3.
Zool Res ; 43(2): 205-216, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35084126

RESUMO

Red tilapia ( Oreochromis spp .) is one of the most popular fish in China due to its bright red appearance, fast growth rate, and strong adaptability. Understanding the sex determination mechanisms is of vital importance for the selection of all-male lines to increase aquacultural production of red tilapia. In this research, the genetic architecture for sex from four mapping populations ( n=1 090) of red tilapia was analyzed by quantitative trait loci (QTL)-seq, linkage-based QTL mapping, and linkage disequilibrium (LD)-based genome-wide association studies. Two genome-wide significant QTL intervals associated with sex were identified on ChrLG1 (22.4-23.9 Mb) and ChrLG23 (32.0-35.9 Mb), respectively. The QTL on ChrLG1 was detected in family 1 (FAM1), FAM2, and FAM4, and the other QTL on ChrLG23 was detected in FAM3 and FAM4. Four microsatellite markers located within the QTL were successfully developed for marker-assisted selection. Interestingly, three ( lpp, sox14, and amh) of the 12 candidate genes located near or on the two QTL intervals were abundantly expressed in males, while the remaining genes were more highly expressed in females. Seven genes ( scly, ube3a, lpp, gpr17, oca2, cog4, and atp10a) were significantly differentially expressed between the male and female groups. Furthermore, LD block analysis suggested that a cluster of genes on ChrLG23 may participate in regulating sex development in red tilapia. Our study provides important information on the genetic architecture of sex in red tilapia and should facilitate further exploration of sex determination mechanisms in this species.


Assuntos
Locos de Características Quantitativas , Tilápia , Animais , Feminino , Estudos de Associação Genética/veterinária , Ligação Genética , Masculino , Tilápia/genética
4.
Front Genet ; 11: 244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256528

RESUMO

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism for cells to generate transcript variability and proteome diversity. No systematic investigation of AS events among different tissues in response to stressors is available for tilapia currently. In this study, AS among different tissues was identified and the cold stress-related AS events were explored in a Nile tilapia (Oreochromis niloticus) line based on 42 RNA-seq datasets using a bioinformatics pipeline. 14,796 (82.76%; SD = 2,840) of the expression genes showed AS events. The two most abundant AS types were alternative transcription start site (TSS) and terminal site (TTS) in tilapia. Testis, brain and kidney possess the most abundant AS gene number, while the blood, muscle and liver possess the least number in each tissue. Furthermore, 208 differentially alternative splicing (DAS) genes in heart and 483 DAS in brain in response to cold stress. The number of AS types for alternative exon end, exon skipping and retention of single intron increased significantly under cold stress. GO enrichment and pathway overrepresentation analysis indicated that many DAS genes, e.g., genes in circadian clock pathway, may influence expression of downstream genes under cold stress. Our study revealed that AS exists extensively in tilapia and plays an important role in cold adaption.

5.
Mar Biotechnol (NY) ; 21(3): 384-395, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30863905

RESUMO

Body color is an interesting economic trait in fish. Red tilapia with red blotches may decrease its commercial values. Conventional selection of pure red color lines is a time-consuming and labor-intensive process. To accelerate selection of pure lines through marker-assisted selection, in this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) technology was applied to genotype a full-sib mapping family of Malaysia red tilapia (Oreochromis spp.) (N = 192). Genome-wide significant quantitative trait locus (QTL)-controlling red blotches were mapped onto two chromosomes (chrLG5 and chrLG15) explaining 9.7% and 8.2% of phenotypic variances by a genome-wide association study (GWAS) and linkage-based QTL mapping. Six SNPs from the chromosome chrLG5 (four), chrLG15 (one), and unplaced supercontig GL831288-1 (one) were significantly associated to the red blotch trait in GWAS analysis. We developed nine microsatellite markers and validated significant correlations between genotypes and blotch data (p < 0.05). Our study laid a foundation for exploring a genetic mechanism of body colors and carrying out genetic improvement for color quality in tilapia.


Assuntos
Pigmentação/genética , Locos de Características Quantitativas/genética , Tilápia/genética , Animais , Aquicultura , Cruzamento , Estudo de Associação Genômica Ampla , Fenótipo
6.
Mar Biotechnol (NY) ; 21(4): 488-502, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31076921

RESUMO

Ammonia is toxic to aquatic animal. Currently, only limited works were reported on the responses of aquatic animals after ammonia exposure using "omics" technologies. Tilapia suffers from the stress of ammonia-nitrogen during intensive recirculating aquaculture. Optimizing ammonia stress tolerance has become an important issue in tilapia breeding. The molecular and biochemical mechanisms of ammonia-nitrogen toxicity have not been understood comprehensively in tilapia yet. In this study, using RNA-seq and gas chromatograph system coupled with a Pegasus HT time-of-flight mass spectrometer (GC-TOF-MS) techniques, we investigated differential expressed genes (DEGs) and metabolomes in the liver at 6 h post-challenges (6 hpc) and 24 h post-challenges (24 hpc) under high concentration of ammonia-nitrogen treatment. We detected 2258 DEGs at 6 hpc and 315 DEGs at 24 hpc. Functional enrichment analysis indicated that DEGs were significantly associated with cholesterol biosynthesis, steroid and lipid metabolism, energy conservation, and mitochondrial tissue organization. Metabolomic analysis detected 31 and 36 metabolites showing significant responses to ammonia-nitrogen stress at 6 and 24 hpc, respectively. D-(Glycerol 1-phosphate), fumaric acid, and L-malic acid were found significantly down-regulated at both 6 and 24 hpc. The integrative analysis of transcriptomics and metabolomics suggested considerable alterations and precise control of gene expression at both physiological and molecular levels in response to the stress of ammonia-nitrogen in tilapia.


Assuntos
Amônia/toxicidade , Proteínas de Peixes/genética , Fígado/efeitos dos fármacos , Metaboloma/genética , Tilápia/genética , Poluentes Químicos da Água/toxicidade , Animais , Colesterol/metabolismo , Exposição Ambiental , Proteínas de Peixes/classificação , Proteínas de Peixes/metabolismo , Fumaratos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Glicerofosfatos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Malatos/metabolismo , Anotação de Sequência Molecular , Estresse Fisiológico/genética , Tilápia/metabolismo , Transcriptoma
7.
Mar Biotechnol (NY) ; 21(2): 250-261, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30737627

RESUMO

Understanding the genetic mechanism of osmoregulation is important for the improvement of salt tolerance in tilapia. In our previous study, we have identified a major quantitative trait locus (QTL) region located at 23.0 Mb of chrLG18 in a Nile tilapia line by QTL-seq. However, the conservation of these QTLs in other tilapia populations or species is not clear. In this study, we successfully investigated the QTLs associated with salt tolerance in a mass cross population from the GIFT line of Nile tilapia (Oreochromis niloticus) using a ddRAD-seq-based genome-wide association study (GWAS) and in a full-sib family from the Malaysia red tilapia strain (Oreochromis spp) using QTL-seq. Our study confirmed the major QTL interval that is located at nearly 23.0 Mb of chrLG18 in Nile tilapia and revealed a long QTL cluster across chrLG18 controlling for the salt-tolerant trait in both red tilapia and Nile tilapia. This is the first GWAS analysis on salt tolerance in tilapia. Our finding provides important insights into the genetic architecture of salinity tolerance in tilapia and supplies a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the underlying genes for salt tolerance in tilapia.


Assuntos
Ciclídeos/genética , Tolerância ao Sal/genética , Animais , Mapeamento Cromossômico , Ciclídeos/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA