Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401044, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516941

RESUMO

Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.

2.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38856683

RESUMO

Magnetic property (e.g. spin order) of support is of great importance in the rational design of heterogeneous catalysts. Herein, we have taken the Ni-supported ferromagnetic (FM) CrBr3 support (Nix/CrBr3) to thoroughly investigate the effect of spin-order on electrocatalytic oxygen reduction reaction (ORR) via spin-polarized density functional theory calculations. Specifically, Ni loading induces anti-FM coupling in Ni-Cr, leading to a transition from FM-to-ferrimagnetic (FIM) properties, while Ni-Ni metallic bonds create a robust FM direct exchange, benefiting the improvement of the phase transition temperature. Interestingly, with the increase in Ni loading, the easy magnetic axis changes from out-of-plane (2D-Heisenberg) to in-plane (2D-XY). The adsorption properties of Nix/CrBr3, involving O2 adsorption energy and configuration, are not governed by the d-band center but strongly correlate with magnetic anisotropy. It is noteworthy that the applied potential and electrolyte acidity triggers spin-order transition phenomena during the ORR and induces the catalytic pathway change from 4e- ORR to 2e- ORR with the excellent onset potential of 0.93 V/reversible hydrogen electrode, comparable to the existing most excellent noble-metal catalysts. Generally, these findings offer new avenues to understand and design heterogeneous catalysts with magnetic support.

3.
Angew Chem Int Ed Engl ; : e202407078, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771270

RESUMO

Herein, we report the synthesis of a novel intramolecular donor-acceptor (D-A) system ([12]CPP-8TPAOMe) based on cycloparaphenylenes (CPPs) grafted with eight di(4-methoxyphenyl)amino groups (TPAOMe) as donors. Compared to [12]CPP, D-A nanohoop exhibited significant changes in physical properties, including a large redshift (>78 nm) in the fluorescence spectrum and novel positive solvatofluorochromic properties with a maximum peak ranging from 484 nm to 546 nm. The potential applications of [12]CPP-8TPAOMe in electron- and hole-transport devices were further investigated, and its bipolar behavior as a charge transport active layer was clearly observed.

4.
Angew Chem Int Ed Engl ; : e202410414, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924578

RESUMO

A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln = Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln = Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x = 6 for 0D, x = 3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln = Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.

5.
Angew Chem Int Ed Engl ; : e202410710, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949854

RESUMO

Metallo-supramolecular cages have garnered tremendous attention for their diverse yet molecular-level precision structures. However, physical properties of these supramolecular ensembles, which are of potential significance in molecular electronics, remain largely unexplored. We herein constructed a series of octahedral metallo-cages and cage-fullerene complexes with notably enhanced structural stability. As such, we could systematically evaluate the electrical conductivity of these ensembles at both single-molecule level and aggregated bulk state (as well-defined films). Our findings reveal that counteranions and fullerene guests play a pivotal role in determining the electrical conductivity of aggregated state, while such effects are less significant for single-molecule conductance. Both counteranions and fullerenes effectively tune the electronic structures and packing density of metallo-supramolecular assemblies, and facilitate efficient charge transfer between the cage hosts and fullerenes, resulting in a notable one order of magnitude increase in electrical conductivity of the aggregated state.

6.
J Am Chem Soc ; 145(31): 16983-16987, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505903

RESUMO

Electrically conductive metal-organic frameworks (MOFs) have been extensively studied for their potential uses in energy-related technologies and sensors. However, achieving that goal requires MOFs to be highly stable and maintain their conductivity under practical operating conditions with varying solution environments and temperatures. Herein, we have designed and synthesized a new series of {[Ln4(µ4-O)(µ3-OH)3(INA)3(GA)3](CF3SO3)(H2O)6}n (denoted as Ln4-MOFs, Ln = Gd, Tm, and Lu, INA = isonicotinic acid, GA = glycolic acid) single crystals, where electrons are found to transport along the π-π stacked aromatic carbon rings in the crystals. The Ln4-MOFs show remarkable stability, with minimal changes in conductivity under varying solution pH (1-12), temperature (373 K), and electric field as high as 800 000 V/m. This stability is achieved through the formation of strong coordination bonds between high-valent Ln(III) ions and rigid carboxylic linkers as well as hydrogen bonds that enhance the robustness of the electron transport path. The demonstrated lanthanide MOFs pave the way for the design of stable and conductive MOFs.

7.
Chemistry ; 29(30): e202300321, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36890654

RESUMO

Exploring cost-efficient/durability bifunctional electrocatalysts are of upmost importance for the practical application of metal-air batteries. However, preparing bifunctional electrocatalysts with the above three advantages remains conceptually challenging. This work reports the preparation of N-doped carbon confined NiCo alloy hollow spheres (NiCo@N-C HS) as bifunctional oxygen electrocatalyst for Zn-air battery with a higher energy density (788.7 mWh gZn -1 ) and outstanding cycling stability (over 200 h), which are more durable than the commercialized Pt/C+RuO2 -based device. Electrochemical results and theoretical calculation demonstrate that the synergy in the NiCo@N-C accelerates the electronic transmission for improving activation of O2 * and OH* intermediates and optimizing reacted free energy pathways, while the hollow structures exposure more active sites for improving the reaction kinetics and enhancing the activity of ORR/OER reaction. This work provides crucial understanding for constructing low-cost transition metal-based catalyst to overcome the efficiency and durability barriers of metal-air batteries for widespread applications.

8.
Inorg Chem ; 62(16): 6518-6526, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37040307

RESUMO

Reasonable development of high-efficiency and robust electrocatalysts for efficient electrocatalytic water splitting at high current density is hopeful for renewable energy, but the real challenge is substituting the precious metal catalysts. Herein, ultrathin Fe-modified Ni2P/Ni5P4 nanosheet arrays hybridized with N-doped carbon grown on Ni foam (Fe-Ni2P/Ni5P4@N-C) were synthesized via a solvothermal-pyrolysis strategy. Theoretical calculations and in situ Raman characterizations confirm that the Fe sites can facilitate the surface reconstruction of highly active NiOOH species and significantly lower the energy barrier for the formation of the *OOH intermediate owing to the electron coupling effect between Fe and the Ni2P/Ni5P4 heterostructure. On account of the structural advantages and compositional synergy, the optimized Fe-Ni2P/Ni5P4@N-C exhibits superior hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities with an overpotential of 105 and 280 mV to reach 10 and 50 mA cm-2, respectively, and can work stably for 60 h at 100 mA cm-2. Impressively, the electrolyzer with Fe-Ni2P/Ni5P4@N-C only needs 1.56 V to achieve 10 mA cm-2 current density for water splitting. This protocol not only provides inspiration for designing transitional metal electrocatalysts for water splitting but also puts forward a pathway for practical application.

9.
Inorg Chem ; 62(1): 266-274, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548144

RESUMO

Multifunctional materials with switchable magnetic and dielectric properties are crucial for the development of memory and sensor devices. Herein, we report a methoxy-bridged dinuclear iron-pyridyl complex [Fe2(4-picoline)4(NCS)4(µ-OCH3)2] (1), which shows simultaneous thermal-induced magnetic and dielectric switchings. Within the phase-transition temperature range, both magnetic switching and the dielectric anomaly were detected, in which the thermal hysteresis loops were 23 and 21 K, respectively. Detailed structural analyses revealed that these simultaneous switchings were rooted in the flexible rotatable ligands, which were actuated by readjusting the π-π intermolecular interactions between the pyridine ligands in the trans positions of the metal centers. These results were comprehensively investigated both experimentally and theoretically. This study presents a new guideline to control both the magnetic and dielectric properties of molecular complexes by external stimuli.

10.
Phys Chem Chem Phys ; 25(16): 11673-11683, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37051874

RESUMO

The rational design of high-performance catalysts for oxygen reduction reactions (ORRs) is of great importance for large-scale applications in the field of proton-exchange membrane fuel cells and the green synthesis of H2O2. The effect of spin states of paramagnetic metal ions on the selectivity of ORRs is significant for single-atom catalysts (SACs). In this work, via spin-polarization density functional theory (DFT) calculations, we systematically investigated the popular paramagnetic metal-nitrogen graphene (M-N4-C, M = Mn, Fe, and Co) SACs to mainly focus on the correlation of spin states and catalytic performance (e.g. activity and selectivity). Both thermodynamically and kinetically, it was found that Co-N4-C (S = 1/2) has excellent 2e- oxygen reduction performance (hydrogen peroxide production) with an ultralow overpotential of 0.03 V, and the hydrogenation of OOH* is the rate-determining step (RDS) with an energy barrier of 1.20 eV. The 4e- ORR tends to occur along the OOH dissociation pathway (O* + OH*) on Co-N4-C (S = 3/2), in which OOH* decomposition is the RDS with an energy barrier of 1.01 eV. It is proved that the spin magnetic moment is the key factor to regulate the ORR property via multi-angle electronic analysis. The spin states of catalysts play a crucial role in the activity and selectivity of ORRs mainly by manipulating the bond strength between OOH and catalysts. This will provide new insights for the rational design of ORR catalysts with magnetic metals.

11.
Appl Opt ; 62(16): 4187-4196, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706903

RESUMO

Spherical/aspherical mirrors are widely used in optical systems and imaging systems, but their reflectivity is affected by the surface roughness. In this study, the effects of plastic side flow and elastic recovery on the diffraction phenomenon and reflectivity are analyzed systematically. The energy ratio of an ultra-precision turning surface is calculated by rigorous coupled-wave method, the influence of aberration on diffraction efficiency is considered in combination with the specific structural parameters of spherical/aspherical surface, and the appropriate measuring beam diameter is selected. Through predicted results and experimental observations, it can be found that with the increase of plastic side flow height, the energy ratio of zero-order diffracted light reduces, the brightness weakens, and the diffraction light spots become more obvious. This is because large plastic side flow height leads to more complex three-dimensional surface topography and great roughness P-V value. The influence of elastic recovery on the reflectivity is different from that of plastic side flow. As the elastic recovery increases, the roughness P-V value lessens. As a result, the energy ratio of zero-order diffracted light enlarges, and the brightness strengthens. This paper provides a theoretical basis for machining of spherical/aspheric mirrors with high reflectivity.

12.
Appl Opt ; 62(18): 4978-4986, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37707276

RESUMO

In this paper the influence of vibration on reflectivity is systematically analyzed. A three-dimensional topography model of a machined surface considering vibration is established first. Based on the three-dimensional morphology model, the reflectivity of a diamond turned surface is calculated by a rigorous coupled wave method. The influences of cutting parameters on the diffraction effect of a diamond turned surface are discussed. The predicted and experimental results reveal that as the vibration intensifies with an increase in cutting depth and feed rate, the peak-valley (PV) roughness of the machined surface increases, which yields an increasing diffraction effect, i.e., resulting in a decrease in reflectivity. When the spindle speed is low, the tool and workpiece have a small sliding velocity, causing a great deal of friction, which amplifies the deformation of the workpiece surface. In this case, the PV value of the machined surface roughness is large, leading to a greater diffraction effect and bad reflectivity. With the increment of spindle rotation speed, the friction is relieved quickly, but the vibration is intensified, which produces increasing reflectivity. When the spindle speed is set to about 1200r/min, the reflectivity reaches the maximum value. When the spindle speed is larger than 1200r/min, the increase of vibration is dominant, resulting in a gradual increase in PV surface roughness and a decrease in reflectivity.

13.
Angew Chem Int Ed Engl ; 62(6): e202216592, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478491

RESUMO

We explored a co-dissolved strategy to embed mono-dispersed Pt center into V2 O5 support via dissolving [PtV9 O28 ]7- into [V10 O28 ]6- aqueous solution. The uniform dispersion of [PtV9 O28 ]7- in [V10 O28 ]6- solution allows [PtV9 O28 ]7- to be surrounded by [V10 O28 ]6- clusters via a freeze-drying process. The V centers in both [PtV9 O28 ]7- and [V10 O28 ]6- were converted into V2 O5 via a calcination process to stabilize Pt center. These double separations can effectively prevent the Pt center agglomeration during the high-temperature conversion process, and achieve 100 % utilization of Pt in [PtV9 O28 ]7- . The resulting Pt-V2 O5 single-atom-site catalysts exhibit a CH4 yield of 247.6 µmol g-1 h-1 , 25 times higher than that of Pt nanoparticle on the V2 O5 support, which was accompanied by the lactic acid photooxidation to form pyruvic acid. Systematical investigations on this unambiguous structure demonstrate an important role of Pt-O atomic pair synergy for highly efficient CO2 photoreduction.

14.
J Am Chem Soc ; 144(30): 13787-13793, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35860923

RESUMO

Magnetic refrigerants with a large magnetocaloric effect (MCE) in a wide temperature range and low magnetic ordering temperature (To) in the sub-kelvin temperature region are not only crucial for adiabatic demagnetization refrigeration but also open up a broader parameter space for the optimal design of adiabatic demagnetization refrigerators. However, such magnetic refrigerants are extremely rare because they require magnetic materials to simultaneously satisfy three conditions: low To, weak magnetic interaction, and high magnetic density. Here, we report the syntheses, heat capacities, and magnetic properties of Gd(OH)3-xFx (1: x = 1, 2: x ≈ 1.5, and 3: x = 2), demonstrating for the first time that the introduction of fluoride anions into antiferromagnetic Gd(OH)3 can effectively regulate its To. Significantly, 3 not only has a To of 0.5 K but also exhibits a large MCE in the temperature range from 0.5 to 4 K, representing the best magnetic refrigerant reported to date in the temperature range of 0.5-4 K from the viewpoint of the MCE.

15.
Chemistry ; 28(13): e202103828, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019179

RESUMO

Distorting linear polyaromatic hydrocarbons (PAHs) out of planarity affects their physical properties and breaks their symmetry to induce inherent chirality. However, the chirality cannot be achieved in large distorted PAHs-based macrocycles due to a low racemization barrier for isomerization. Herein, we report the precise synthesis and tuning size-dependent (chir)optical properties of a new class of chiral PAHs-containing conjugated macrocycles (cyclo[n]paraphenylene-2,6-anthrylene, [n]CPPAn2,6 ; n=6-8). Their inherent chiralities were squeezed out in small anthrylene-based macrocycles. Efficient resolutions for chiral enantiomers with (P)/(M)-helicity of small [6-7]CPPAns were achieved by HPLC. Interestingly, these macrocycles showed enriched size-dependent physical, chiral, and (chir)optical properties. Theoretical calculations indicate that these macrocycles have high strain energy (Estrain =60.8 to 73.4 kcal/mol) and very small Egap (∼3.0 eV). Notably, these enantiomers showed strong chiroptical properties and dissymmetry factors (|gabs | and |glum |∼0.01 for an enantiomer of [6]CPPAn2,6 ), which can give them potential applications in optically active materials.

16.
Chemistry ; 28(66): e202202433, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36166700

RESUMO

Rationally designing interface structure to modulate the electronic structure of a photocatalyst is an efficient strategy to facilitate the separation and migration of photogenerated charge carriers and improve photocatalytic activity. In this work, a AgCl/Pd heterostructure encapsulated by N-doped carbon nanotubes (AgCl/Pd@N-C) with a fan-like morphology assembled hollow tubes was synthesized by pyrolysis of a AgCl/Pd@Bim precursor. The unique interface structure not only increases the number of photogenerated charge carriers, but also provides an effective channel for the separation of electrons and holes, which have been proved by density functional theory (DFT) calculations. As expected, the obtained AgCl/Pd-3@N-C exhibited greatly enhanced conversion efficiency and recyclability toward the photocatalytic oxidative coupling of amine under blue-light irradiation.

17.
Inorg Chem ; 61(27): 10263-10266, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35767466

RESUMO

The detailed mechanism of metal-organic-framework (MOF)-based separation materials is still obscure, which obviously hinders their actual application. To address this problem, a trinuclear Cu-cluster-based MOF with a minimum metal-active plane was synthesized for the study of the very challenging C2H2/C2H4 and C2H2/CO2 separations. Via dispersion-corrected density functional theory calculations, it is indicated that the difference of the adsorption energy accounts for the excellent separation properties toward C2H2/C2H4 and C2H2/CO2 mixtures, while the frontier molecular orbitals demonstrate that the adsorption-energy difference originates from the orbital-symmetry difference of gas molecules. All of these results provide not only deep insight into the separation mechanism but also an alternative strategy to prepare efficient adsorbents.

18.
Inorg Chem ; 61(23): 8861-8869, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35653200

RESUMO

A family of nanoclusters, [Ln33(EDTA)12(OAc)2(CO3)4(µ3-OH)36(µ5-OH)4(H2O)38]·OAc·xH2O (x ≈ 50, Ln = Sm for 1; x ≈ 70, Ln = Eu for 2) and [Gd32(EDTA)12(OAc)2(C2O4)(CO3)2(µ3-OH)36(µ5-OH)4(H2O)36]·x(H2O) (x ≈ 70 for 3; H4EDTA = ethylene diamine tetraacetic acid), was prepared through the assembly of repeating subunits under the action of an anion template. The analysis of the structures showed that compounds 1 and 2 containing 33 Ln3+ ions were isostructural, which were constructed by three kinds of subunits in the presence of CO32- as an anion template, while compound 3 had a slightly different structure. Compound 3 containing 32 Gd3+ ions was formed by three types of subunits in the presence of CO32- and C2O42- as a mixed anion template. The CO32- anions came from the slow fixation of CO2 in the air. Meanwhile, one kind of high-nuclearity lanthanide clusters showed high chemical stability. The quantum Monte Carlo (QMC) calculation suggested that weak antiferromagnetic interactions were dominant between Gd3+ ions in 3. Magnetocaloric studies showed that compound 3 had a large entropy change of 43.0 J kg-1 K-1 at 2 K and 7 T. Surprisingly, compound 2 showed excellent recognition and detection effects for permanganate in aqueous solvents based on the fluorescence quenching phenomenon.

19.
Phys Chem Chem Phys ; 24(6): 3905-3917, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089298

RESUMO

Studying the effect of the coordination field on the catalytic property is critical for the rational design of outstanding electrocatalysts for H2O2 synthesis. Herein, via density functional theory (DFT) calculations and ab initio molecular dynamic (AIMD) simulations, we built an effective computational framework to identify the synergetic effect of an aqua ligand and metal ion on the 2e- ORR catalytic performance under gas condition and aqua solvent. Specifically, the screening results of 29 single-atom catalysts (SACs), TM@C6N6 (TM = transition metal), indicated that Cu@C6N6 features excellent catalytic property with thermal stability, lowest 2e- ORR overpotential (0.02 V) and high selectivity of 99.99%. Once an aqua ligand binds with the Cu site, the activity is reduced to the overpotential of 0.42 V and the selectivity decreased slightly (99.98%) due to the reduction of the adsorption strength for the reaction intermediates. A combination of geometric structures and electronic properties revealed that such changes are correlated with the charge of the Cu site. Furthermore, based on molecular orbital theory, the essence of the high catalytic property deeply lies in the effect of the moderate electron back donation bond (dyz & dxz→) between Cu and O2. This work will provide a route to better design high-performance SACs for H2O2 synthesis effectively.

20.
J Am Chem Soc ; 143(16): 6114-6122, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33871997

RESUMO

It is highly desirable to achieve solar-driven conversion of CO2 to valuable fuels with controlled selectivity. The existing catalysts are mainly explored for CO production but rarely for formate generation. Herein, highly selective photoreduction of CO2 to formate (99.7%) was achieved with a high yield of 3040 µmol g-1 in 10 h by hierarchical integration of photosensitizers and monometallic [bpy-Cu/ClX] (X = Cl or adenine) catalysts into a stable Eu-bpy metal-organic framework. However, replacing X with pyridine in [bpy-CuCl/X] significantly reduced formate production while increasing the CO yield to 960 µmol g-1. Systematic investigations revealed that the catalytic process is mediated by the H-bond synergy between Cu-bound X and CO2-derived species, and the selectivity of HCOO- can be controlled by simply replacing the coordination ligands. This work provides a molecularly precise structural model to provide mechanistic insights for selectivity control of CO2 photoreduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA